ISSN 0371-0874, CN 31-1352/Q

当期文章

人工智能处理医学数据伦理要求的专家共识

李骢1,2,3, 张晓燕1,4, 吴云红1,2,3, 杨晓蕾3, 余华荣1,5, 金宏波1,6, 李英博1,5, 朱朝晖1,7, 刘瑞1,8, 刘娜1,9, 谢轶1,10, 吕林莉1,11, 朱心红1,12, 唐洪1,13, 李红芳1,14, 李红丽1,15, 曾翔俊1,16, 陈再兴1,2,17, 范小芳1,18, 王燕1,19, 吴枝娟1,20, 吴遵秋1,21, 关亚群1,22, 薛明明1,23, 罗彬1,24, 王爱梅1,2,25, 杨新旺1,26, 应颖1,27, 杨秀红1,28, 黄新忠1,29, 郎明非1,30, 陈世民1,31, 张环环1,32, 张忠1,2,33, 黄武1,34, 徐国标1,34, 柳嘉琪35, 宋涛3, 肖晶3, 夏云龙3, 管又飞3,*, 朱亮1,2,3

1中国生理学会虚拟仿真与人工智能专业委员会;2辽宁省机能学学会,大连 116041;3大连医科大学,大连 116041;4华东师范大学,上海 200241;5重庆医科大学,重庆 400016;6哈尔滨医科大学机能学实验教学中心,哈尔滨 150081;7中国医学科学院北京协和医学院,北京 100730;8北京航空航天大学,北京 100191;9同济大学附属东方医院,上海 200092;10四川大学华西医院,成都 610065;11东南大学,南京 214135;12华南理工大学/人工智能与数字经济广东省实验室(广州),广州 510006;13大连理工大学,大连 116024;14兰州大学,兰州 730000;15陆军军医大学基础医学教学实验中心,重庆 400038;16首都医科大学,北京 100069;17中国医科大学医学基础实验教学中心,沈阳 110122;18温州医科大学基础医学实验国家级实验教学示范中心,温州 325035;19山西医科大学基础医学院,太原 030001;20福建医科大学基础医学院生理学与病理生理学系,福州350122;21贵州医科大学基础医学国家级实验教学示范中心,贵阳 550025;22新疆医科大学基础医学院,乌鲁木齐 830054;23内蒙古医科大学,内蒙古呼和浩特 010110;24广西医科大学基础医学院,南宁 530021;25锦州医科大学,锦州 121001;26昆明医科大学基础医学院,昆明 650500;27深圳大学医学部,深圳 518052;28华北理工大学,唐山 063210;29南通大学附属医院,南通 226019;30大连大学基础医学实验教学中心,大连 116622;31海南医科大学,海口 571199;32皖南医学院,芜湖 241002;33沈阳医学院,沈阳 110034;34成都泰盟软件有限公司,成都 610101;35华为技术有限公司,深圳 518000

摘要

随着人工智能技术的飞速发展,其在医学领域的应用带来了显著的伦理挑战。因而,建立规范、透明、安全的医学数据处理环境,确立医学人工智能的伦理学底线,保障患者权益和数据安全就显得尤为重要。本共识规范了利用人工智能技术进行医学数据处理的各个环节,包括数据的采集、加工、存储、传输、使用和共享,确保医学数据处理符合伦理原则和法律法规,保障患者隐私和数据安全。同时,还强调了合法合规原则、尊重患者隐私原则、保护患者利益原则以及安全可靠原则,并详细讨论了知情同意、数据的使用、知识产权保护、利益冲突和共享等关键性问题。本专家共识的制定,旨在推动人工智能与医学领域的深度融合与持续发展,同时确保在处理医学数据的过程中,人工智能严格遵循相应的伦理规范和法律法规。


关键词: 人工智能; 医学数据; 伦理安全

Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data

LI Cong1,2,3, ZHANG Xiao-Yan1,4, WU Yun-Hong1,2,3, YANG Xiao-Lei3, YU Hua-Rong1,5, JIN Hong-Bo1,6, LI Ying-Bo1,5, ZHU Zhao-Hui1,7, LIU Rui1,8, LIU Na1,9, XIE Yi1,10, LYU Lin-Li1,11, ZHU Xin-Hong1,12, TANG Hong1,13, LI Hong-Fang1,14, LI Hong-Li1,15, ZENG Xiang-Jun1,16, CHEN Zai-Xing1,2,17, FAN Xiao-Fang1,18, WANG Yan1,19, WU Zhi-Juan1,20, WU Zun-Qiu1,21, GUAN Ya-Qun1,22, XUE Ming-Ming1,23, LUO Bin1,24, WANG Ai-Mei1,2,25, YANG Xin-Wang1,26, YING Ying1,27, YANG Xiu-Hong1,28, HUANG Xin-Zhong1,29, LANG Ming-Fei1,30, CHEN Shi-Min1,31, ZHANG Huan-Huan1,32, ZHANG Zhong1,2,33, HUANG Wu1,34, XU Guo-Biao1,34, LIU Jia-Qi35, SONG Tao3, XIAO Jing3, XIA Yun-Long3, GUAN You-Fei3,*, ZHU Liang1,2,3

1Virtual Simulation and Artificial Intelligence Committee, Chinese Association for Physiological Sciences;2Liaoning Province Function Science Society, Dalian 116041, China;3Dalian Medical University, Dalian 116041, China;4East China Normal University, Shanghai 200241, China;5Chongqing Medical University, Chongqing 400016, China;6Function Science Experimental Teaching Center, Harbin Medical University, Harbin 150081, China;7Chinese Academy of Medical Sciences & Beijing Union Medical College, Beijing 100730, China;8Beihang University, Beijing 100191, China;9East Hospital Affiliated to Tongji University, Shanghai 200092, China;10West China Hospital of Sichuan University, Chengdu 610065, China;11Southeast University, Nanjing 214135, China;12Artificial Intelligence and Digital Economy Guangdong Province Laboratory (Guangzhou), South China University of Technology, Guangzhou 510006, China;13Dalian University of Technology, Dalian 116024, China;14Lanzhou University, Lanzhou 730000, China;15Basic Medical Teaching Experimental Center, Army Medical University, Chongqing 400038, China;16Capital Medical University, Beijing 100069, China;17Medical Basic Experimental Teaching Center, China Medical University, Shenyang 110122, China;18Basic Medicine Experimental National Experimental Teaching Demonstration Center, Wenzhou Medical University, Wenzhou 325035, China;19Basic Medical College, Shanxi Medical University, Taiyuan 030001, China;20Department of Physiology and Pathophysiology, Basic Medical College, Fujian Medical University, Fuzhou 350122, China;21Basic Medicine National Experimental Teaching Demonstration Center, Guizhou Medical University, Guiyang 550025, China;22Basic Medical College, Xinjiang Medical University, Urumqi 830054, China;23Inner Mongolia Medical University, Hohhot 010110, China;24Basic Medical College, Guangxi Medical University, Nanning 530021, China;25Jinzhou Medical University, Jinzhou 121001, China;26Basic Medical College, Kunming Medical University, Kunming 650500, China;27Shenzhen University Medical School, Shenzhen 518052, China;28North China University of Science and Technology, Tangshan 063210, China;29Affiliated Hospital of Nantong University, Nantong 226019, China;30Basic Medical Experimental Teaching Center, Dalian University, Dalian 116622, China;31Hainan Medical University, Haikou 571199, China;32Wannan Medical College, Wuhu 241002, China;33Shenyang Medical College, Shenyang 110034, China;34Chengdu Techman Software Co., Ltd., Chengdu 610101, China;35Huawei Technologies Co., Ltd., Shenzhen 518000, China

Abstract

As artificial intelligence technology rapidly advances, its deployment within the medical sector presents substantial ethical challenges. Consequently, it becomes crucial to create a standardized, transparent, and secure framework for processing medical data. This includes setting the ethical boundaries for medical artificial intelligence and safeguarding both patient rights and data integrity. This consensus governs every facet of medical data handling through artificial intelligence, encompassing data gathering, processing, storage, transmission, utilization, and sharing. Its purpose is to ensure the management of medical data adheres to ethical standards and legal requirements, while safeguarding patient privacy and data security. Concurrently, the principles of compliance with the law, patient privacy respect, patient interest protection, and safety and reliability are underscored. Key issues such as informed consent, data usage, intellectual property protection, conflict of interest, and benefit sharing are examined in depth. The enactment of this expert consensus is intended to foster the profound integration and sustainable advancement of artificial intelligence within the medical domain, while simultaneously ensuring that artificial intelligence adheres strictly to the relevant ethical norms and legal frameworks during the processing of medical data.

Key words: artificial intelligence; medical data; ethical safety

收稿日期:  录用日期:

通讯作者:管又飞  E-mail:

引用本文:

李骢, 张晓燕, 吴云红, 杨晓蕾, 余华荣, 金宏波, 李英博, 朱朝晖, 刘瑞, 刘娜, 谢轶, 吕林莉, 朱心红, 唐洪, 李红芳, 李红丽, 曾翔俊, 陈再兴, 范小芳, 王燕, 吴枝娟, 吴遵秋, 关亚群, 薛明明, 罗彬, 王爱梅, 杨新旺, 应颖, 杨秀红, 黄新忠, 郎明非, 陈世民, 张环环, 张忠, 黄武, 徐国标, 柳嘉琪, 宋涛, 肖晶, 夏云龙, 管又飞, 朱亮. 人工智能处理医学数据伦理要求的专家共识[J]. 生理学报 2024; 76 (6): 937-942.

LI Cong, ZHANG Xiao-Yan, WU Yun-Hong, YANG Xiao-Lei, YU Hua-Rong, JIN Hong-Bo, LI Ying-Bo, ZHU Zhao-Hui, LIU Rui, LIU Na, XIE Yi, LYU Lin-Li, ZHU Xin-Hong, TANG Hong, LI Hong-Fang, LI Hong-Li, ZENG Xiang-Jun, CHEN Zai-Xing, FAN Xiao-Fang, WANG Yan, WU Zhi-Juan, WU Zun-Qiu, GUAN Ya-Qun, XUE Ming-Ming, LUO Bin, WANG Ai-Mei, YANG Xin-Wang, YING Ying, YANG Xiu-Hong, HUANG Xin-Zhong, LANG Ming-Fei, CHEN Shi-Min, ZHANG Huan-Huan, ZHANG Zhong, HUANG Wu, XU Guo-Biao, LIU Jia-Qi, SONG Tao, XIAO Jing, XIA Yun-Long, GUAN You-Fei, ZHU Liang. Expert consensus on ethical requirements for artificial intelligence (AI) processing medical data. Acta Physiol Sin 2024; 76 (6): 937-942 (in Chinese with English abstract).