功能性脑成像的多维模式分析方法
李晟*
北京大学心理学系,机器感知与智能教育部重点实验室,北京 100871
摘要
利用非侵入式的功能性脑成像记录大脑活动极大地提升了我们对人类认知功能的理解。与此同时,分析成像数据的手段也逐渐从传统的一元方式向更加有效的多元分析转变。在本综述中,特别针对在认知神经科学领域占主导地位的功能性磁共振成像技术,介绍其多元数据分析方法的发展以及这种分析方法的生理学基础和未来发展方向。
分类号:R338;Q64
Multivariate pattern analysis in functional brain imaging
LI Sheng*
Department of Psychology and Key Laboratory of Machine Perception and Intelligence (Ministry of Education, China), Peking University, Beijing 100871, China
Abstract
The non-invasive recording of brain activity with functional brain imaging greatly advances our understanding of human cognition. At the meantime, more powerful multivariate analysis methods are being developed to compensate the limited capability of traditional univariate approaches. In this review, I will introduce the development of these multivariate methods for functional magnetic resonance imaging (fMRI), the dominant brain imaging technique used in cognitive neuroscience society. The physiological basis of this analysis approach and its future directions will be discussed as well.
Key words: fMRI; multivariate pattern analysis; brain imaging
收稿日期: 录用日期:
通讯作者:李晟 E-mail: sli@pku.edu.cn
引用本文:
李晟. 功能性脑成像的多维模式分析方法[J]. 生理学报 2011; 63 (5): 472-476.
LI Sheng. Multivariate pattern analysis in functional brain imaging. Acta Physiol Sin 2011; 63 (5): 472-476 (in Chinese with English abstract).