Acta Physiologica Sinica, April 25, 2025, 77(2): 289-299 289
DOI: 10.13294/j.aps.2025.0031 CSTR: 32202.14.j.aps.2025.0031 https://actaps.sinh.ac.cn

Review

Relationship of immune response with intestinal flora and metabolic
reprogramming in patients with non-small cell lung cancer

GUO Rui', HE Zhe?, LIU Fan®, PENG Hui-Zhen*, XING Li-Wei" "

"The First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China; >The Second Clinical Medical
College, Yunnan University of Chinese Medicine, Kunming 650500, China; *Department of Rehabilitation, Pingyang Hospital of Tra-
ditional Chinese Medicine, Zhejiang University of Chinese Medicine, Wenzhou 325000, China; 4School of Chinese Materia Medica,
Yunnan University of Chinese Medicine, Kunming 650500, China

Abstract: Numerous research conducted in recent years has revealed that gut microbial dysbiosis, such as modifications in composi-
tion and activity, might influence lung tissue homeostasis through specific pathways, thereby promoting susceptibility to lung dis-
eases. The development and progression of lung cancer, as well as the effectiveness of immunotherapy are closely associated with gut
flora and metabolites, which influence immunological and inflammatory responses. During abnormal proliferation, non-small cell
lung cancer cells acquire more substances and energy by altering their own metabolic pathways. Glucose and amino acid metabolism
reprogramming provide tumor cells with abundant ATP, carbon, and nitrogen sources, respectively, providing optimal conditions for
tumor cell proliferation, invasion, and immune escape. This article reviews the relationship of immune response with gut flora and
metabolic reprogramming in non-small cell lung cancer, and discusses the potential mechanisms by which gut flora and metabolic re-
programming affect the occurrence, development, and immunotherapy of non-small cell lung cancer, in order to provide new ideas

for precision treatment of lung cancer patients.
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Lung cancer is the most prevalent cancer type, with  worldwide each year. Non-small cell lung cancer
around 2 million diagnoses and 1.8 million deaths (NSCLC) and small cell lung cancer (SCLC) are the
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two primary pathological subtypes of lung cancer.
Large-cell carcinoma, squamous carcinoma, and adeno-
carcinoma are among the more than 80% of lung ma-
lignancies that are classified by NSCLC . NSCLC is
a subtype of malignant lung tumors that originate from
the bronchial mucosa, bronchial glands, and alveolar
epithelium. These tumors may be identified under a mi-
croscope by their larger cells, copious amounts of cyto-
plasm, and heterogeneous nuclei . Screening and di-
agnosing NSCLC are extremely difficult as its patho-
physiology in early stages has never been well estab-
lished. The emergence of genome sequencing technolo-
gies has facilitated the screening of cancerous cells in
oncology. The presence of several molecules, such as
epidermal growth factor receptor (EGFR), Kirsten rat
sarcoma viral oncogene (KRAS), tumor suppressor pro-
tein p53 (TP53), anaplastic lymphoma kinase (ALK),
mesenchymal-epithelial transition factor (MET), phos-
phatidylinositol 3-kinase (PI3K) catalytic factor, and
others, has been revealed by sequencing results for
NSCLC. A number of genes known as driver genes, in-
cluding ALK, MET, phosphatidylinositol 3-kinase cata-
lytic alpha (PIK3CA), proto-oncogene tyrosine-protein
kinase receptor Ret (RET), and ROS proto-oncogene 1
(ROSI), are important in the pathophysiology of
NSCLC .

The immunosuppressive tumor microenvironment
(TME) and the aberrant biological features of tumor
cells are key factors in the growth and metastasis of
NSCLC ™. These factors are closely related to the
metabolic adaptation of tumor cells, which occurs in tu-
mors to meet the needs of malignant cells for bioen-
ergy and biosynthesis. When a tumor progresses, its
metabolic preferences and characteristics change. This
process is known as metabolic reprogramming, and it
may be the cause of treatment resistance or tumor cell
escape ¢
lism, oxidative phosphorylation, fatty acid metabolism,

. Aerobic glycolysis, amino acid metabo-

and nucleotide metabolism are the primary modalities
of tumor cell metabolic reprogramming, which is one
of the key elements in the processes of cancer forma-
tion, progression, and immune evasion . Tumor cells'
energy metabolism is different from normal cells' in
aerobic conditions. Specifically, they switch from oxi-
dative phosphorylation to aerobic glycolysis for the
metabolism of glucose, which supplies the energetic
foundation for tumor cell proliferation . Actually,
many cancer cells rely on the amino acid glutamine to
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fulfill their increased energy requirements, which has
an impact on tumor invasion, metastasis, and the effec-
tiveness of therapeutic interventions. Glutamate is a
crucial metabolic fuel for rapidly reproducing tumor
cells .

The vast and intricate microbial community known
as the intestinal flora, which colonizes the intestine, is
essential for human metabolism and health. Together
with the host, it forms a complex superorganism whose
homeostasis is crucially important in regulating the on-
set and progression of human diseases ''”. Through a
complex network of interactions including energy me-
tabolism, immunology, and neuroendocrine function,
the intestinal flora and the host develop a symbiotic
connection ', Using a range of biological correlates,
including immunological channels, neurological chan-
nels, and embryonic developmental homology, Budden
et al."” hypothesized a pathogenic relationship be-
tween bacteria and the gut-lung axis, which regulates
the gut and lungs in concert. This finding implies that
specific communication mechanisms exist between gut
flora and lung cancer. Nonetheless, a thorough compre-
hension of the interplay of metabolic reprogramming,
immunological evasion, and gut flora in NSCLC is de-
ficient, and so more clarification of these correlations
is necessary for more efficacious cancer management.

1 Influence of intestinal flora on the patho-
genesis and immunotherapy of NSCLC

1.1 Influence of intestinal flora on the develop-
ment of NSCLC

In recent years, a great deal of research has revealed a
strong link between gut flora and lung problems. Muta-
tions in lung microbiology and even lung cancer might
result from gut microecological dysbiosis, which in-
creases the number of microbiota generating toxic com-
pounds and antigens "*!. Gastrointestinal bacteria alter
the NSCLC response to inflammation and immunity,
mostly through the lung-gut axis, by interfering with
the metabolic processes of lungs, where inflammatory
response and immunological dysregulation are two es-
sential hallmarks of NSCLC "*. Compared to healthy
individuals, lung cancer patients have reduced meta-
bolic biological activity and a less diverse gut flora "*),
Researchers have observed that NSCLC patients had a
higher density of dangerous bacteria, such as intestinal
actinomyces, streptococcus, fusobacterium, and bacte-
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rium fusiformis, while a lower density of beneficial
probiotics, such as bifidobacterium and lactobacillus,
was present ') The intestinal microbiome of lung
cancer patients was predominantly characterized by de-
creased diversity and biological activity associated
with metabolism, as opposed to healthy individuals "*..
Studies have indicated that respiratory bacteria disor-
ders are most commonly associated with Veillonella
parvula, whose characteristics are linked to interleukin-
17 (IL-17), PI3K, mitogen-activated protein kinase
(MAPK), and extracellular regulated protein kinases
(ERK) pathway reconfiguration .
promoting factors alter the composition of pulmonary

Inflammation-

bacteria through the gut-lung axis; When the gut flora
is disrupted, harmful bacteria cluster and break the in-
testine barrier and immune function, causing intestinal
immune cells to produce large amounts of inflamma-
tory factors such as interferon-y (IFN-y), interleukin-1
(IL-1B), tumor necrosis factor-o. (TNF-o), and IL-18 ['*,
An inflammatory microenvironment can lead to cellu-
lar damage, disrupt immunological homeostasis in the
lungs, and accelerate the onset and spread of lung can-
cer . Low levels of short-chain fatty acids (SCFA) in
the bloodstream can result from gut microecological
dysregulation ***"!, Propionate of SCFA can cause lung
cancer cells to undergo apoptosis and cell cycle arrest .,
Additionally, SCFA are important for both host sys-
temic immunity and systemic inflammation “"*). In
vivo, they can directly modulate Toll-like receptor 4

any
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(TLR-4) signaling, inhibit the production of pro-
inflammatory factors like TNF-q, IL-6, and IL-12, and
increase the production of the anti-inflammatory cyto-
kine IL-10, which directly suppresses immune re-
sponses Y. It is evident that the development of
NSCLC is associated with changes in the gut flora,
which can also have an impact on the lower respiratory
flora through the intestinal-pulmonary axis in reverse.
Additionally, an imbalance in the gut flora and lower
respiratory flora exacerbates the production of pro-
inflammatory factors, indicating that the occurrence
and development of lung cancer are closely related pro-
cesses involving the bacterial microbiota (Fig. 1).

1.2 Effects of intestinal flora on immunotherapy
for NSCLC

Drug therapies, which includes immunotherapy, che-
motherapy, and other treatments, are frequently the cor-
nerstone for the treatment of NSCLC patients; never-
theless, immunotherapy is progressively emerging as a
novel anti-NSCLC strategy . In recent years, human
clinical studies and preclinical trials have shown that
the efficacy of immunotherapeutic agents is influenced
by the patient's intestinal flora, and that certain intesti-
nal bacteria promote the action of a programmed death
1 (PD-1) inhibitor, which, together with its ligand PD-
L1, is a potent therapeutic agent for the treatment of
metastatic NSCLC that lacks sensitizing EGFR or
ALK mutations ** (Fig. 2). Fecal specimens from can-
cer patients who reacted to anti-PD-L1 immunotherapy

Gut dysbiosis

Fig. 1. Immune relationship between intestinal flora and non-small cell lung cancer (NSCLC). A microecological imbalance within

the gut causes the number of beneficial bacteria to decline, which in turn causes a decrease in the synthesis of short-chain fatty acids

(SCFA). This decline directly impacts immune cell function, and pro-inflammatory factors secreted by pathogenic bacteria intensify

lung inflammation via the lung-gut axis. IFN-y, interferon-y; IL-1p/18, interleukin-1p/18; TNF-a, tumor necrosis factor-o. Figure cre-

ated using FigDraw.
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Fig. 2. Regulation of glycolysis in non-small cell lung cancer (NSCLC). Increased glycolysis in NSCLC produces a lot of lactic acid,

which is released into the extracellular space via monocarboxylate transporter 4 (MCT4), creating an acidic extracellular environ-

ment; Transforming growth factor § (TGF-f) induces epithelial-mesenchymal transition (EMT), upregulating pyruvate kinase iso-

form M2 (PKM2), increasing the production of pyruvate (Pyr); The proto-oncogene c-Myc enhances the activities of glucose trans-
porter 1 (GLUT1), hexokinase 2 (HK2), and phosphofructokinase (PFK); n6-methyladenosine (m6A) modification of RNA up-
regulates mRNA expression levels of GLUT1, HK2, lactate dehydrogenase A (LDHA), and B (LDHB). NPM1, nucleophosmin 1; PD-

1, programmed death 1; PD-L1, programmed death-ligand 1.

were shown to include certain bacterial species,
whereas non-responders showed a high abundance of
other bacterial sources. For this reason, the gut micro-
biota may be a promising best response indicator for
71 The antitumor effects of PD-1
blockade were enhanced when fecal microbiota trans-

immunotherapy

plantation (FMT) of cancer patients responding to im-
mune checkpoint inhibitors (ICI) was administered
into germ-free or antibiotic-treated mice "**". Simi-
larly, macrogenomics of fecal samples from patients
with NSCLC showed a correlation between the clinical
response to ICI and the relative abundance of Acker-
mannia and Prevotella **. Furthermore, individuals ex-
hibiting favorable gut flora, such as those with elevated
diversity, demonstrated elevated expression of memory
T cells and NK cells in peripheral blood **. This im-
plies that gut microbes may regulate anti-PD-1 therapy.
Moreover, antibiotics have been shown to modify the
intestinal flora's variety and composition, resulting in
dysbiosis, which may reduce the effectiveness of ICI P!,
Their effects may impact the likelihood of responding
to ICI. The findings of these investigations indicate
that, in order to maximize therapeutic success, immu-
notherapy for NSCLC should be combined with a bal-

anced intestinal microecology, probiotic additions, ad-

justments to the dosage of antibiotics, and dietary
modifications. Increasing the amount of gut flora is the
most effective treatment method to improve immune
surveillance against cancer and increase the efficacy of
ICL

2 Tumor cell metabolic reprogramming

2.1 Glucose metabolic reprogramming

Reprogramming of energy metabolism in tumor cells
has been identified as a novel hallmark of cancer. It fa-
cilitates fast cell division and growth by controlling en-
ergy metabolism so that glycolysis takes over from oxi-
dative phosphorylation as the primary pathway for sup-
plying energy to tumor cells *l. As primary source of
energy for the human body, glucose is generated in the
small intestine from the breakdown of fructose by in-
testinal bacteria. Once glucose reaches the circulation,
it feeds tumor cells and promotes their development
and multiplication ”*. Tumor cells produce adenosine
triphosphate (ATP) primarily through the glycolytic
pathway for their own fast development and biomol-
ecules for cell reproduction through the amino acid
metabolic pathway for cell replication, even in settings

[33]

with enough oxygen “°'. It has been reported that
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transforming growth factor (TGF)-B-induced epithelial-
mesenchymal transition (EMT) in lung adenocarci-
noma cells is accompanied by increased expression of
pyruvate kinase isoform M2 (PKM2) ¥, This suggests
that TGF-P regulates PKM2 expression to promote gly-
colysis in tumor cells. Glycolysis in tumor cells is
down-regulated when PKM2 activity is inhibited. (Fig. 2).
Studies show that TGF-f can dramatically boost glu-
cose uptake and lactate production in hypoxic environ-
ments by upregulating PKM2 expression, which meets
the metabolic requirements of tumor cell growth and
133361 Additionally, lactate is expelled
from the cell through the monocarboxylate transporter
4 (MCT4) and suppresses the ability of a range of immune

B71

proliferation

cells “", which aids the immune escape of tumor cells.
There is mounting evidence that the n6-methyl-
adenosine (m6A) alteration of RNA regulates tumor
glycolysis via a variety of pathways. By improving the
stability of nucleophosmin 1 (NPMT1), which boosts
glycolytic capacity and development, m6A modifica-
tion may up-regulate the expression of glycolytic en-
zymes in lung adenocarcinomas, including hexokinase
2 (HK2), lactate dehydrogenase A (LDHA), lactate de-
hydrogenase B (LDHB), and glucose transporter pro-
tein 1 (GLUT1) P (Fig. 2). In conclusion, in the pro-
cess of glycolysis reprogramming in NSCLC, m6A
modification enhances the expression of GLUT in tu-
mor cells, accelerates glucose input, and promotes the
high expression of key glycolytic enzymes in order to
enable tumor cells to quickly obtain ATP to meet their
energy needs. This provides a large amount of ATP for
gene mutation, drug resistance acquisition, and im-
mune escape of tumor cells.
2.2 Glutamine metabolism
Glutamine is the most prevalent free amino acid in
plasma, and it is extensively used by rapidly reproduc-
ing cells, particularly cancer cells, for energy genera-
tion as well as as a source of carbon and nitrogen for
the synthesis of several biological molecules . Gluta-
mine is second only to glucose in the energy supply
substances of tumor cells. A portion of the glutamine is
used in the cytoplasm for nucleotide and asparagine

40 and the remainder is transported

biosynthesis
through a variant of the mitochondrial glutamine trans-
porter protein, SLC1AS, into the mitochondrial inner
membrane to support mitochondrial oxidative phos-
phorylation “!. The glutamine is transported into the

cell cytosol by its transporters SLC1AS, SLC38AI,

and SLC38A2. Following that, glutamine is converted
to glutamate by GLS (glutamine deaminases, which
can be identified on mitochondria and include GLSI,
GLS2, and GAC) . The SLC25A18 and SLC25A22
transporters on the mitochondria allow glutamate pro-
duced during catabolism to be exported to the cyto-
plasm. From there, it is used in the biosynthesis of glu-
tathione (a tripeptide made up of glutamate, cysteine,
and glycine) and nonessential amino acids (NEAAs, in-
cluding aspartate, alanine, proline, arginine, and aspara-
gine) ’!. Glutamate production is directly dependent
on glutamine. The leftover glutamate in the mitochon-
dria is then transformed into a-ketoglutarate (a-KG) by
glutamate dehydrogenase 1 (GLUD1 or GDH1), and some
of a-KG is exported to the cytoplasm, where it plays a
role in the synthesis of fatty acids and nicotinamide ad-
enine dinucleotide (NADH). Additionally, a-KG in the
mitochondria participates in the tricarboxylic acid
(TCA) cycle, which enables the oxidative phosphoryla-
tion pathway to produce ATP " Research on in-
creased glutamine metabolism in cancer cells has also
demonstrated that metabolic reprogramming is im-
proved by glutamine catabolism, suggesting a critical
role for glutamine metabolism in the development and
spread of tumors ', The aforementioned metabolic path-
ways convert glutamine into glutamine-derived metabo-
lites, such as fumarate, succinate, and R-2-hydroxyglu-
tarate (R-2-HG) ***). These metabolites are thought to
be cancer-related and contribute to carcinogenesis.

The current data demonstrate that glutamine meta-
bolic reprogramming, which sustains mitochondrial
oxidative phosphorylation and supplies metabolic inter-
mediates for the TCA cycle, glutathione synthesis,
NEAA synthesis, and NADPH production, is a critical
component of metabolic adaptation in tumor cells. Car-
bon derived from glutamine is an essential substrate
for the TCA cycle and the synthesis of glutathione. Fur-
thermore, nucleotide, glucosamine, and NEAA produc-
tion all depend on nitrogen, which is obtained from glu-
tamine *!. Targeted therapeutic strategies for gluta-
mine metabolism are a promising anticancer approach
to improve the efficacy of antitumor therapy.

3 Impact of NSCLC metabolic reprogramming
on immune cells in the TME

Metabolic transformation is not limited to tumor cells;
it also refers to the swift growth of other immune cells,
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including regulatory T cells, activated T cells, and neu-
trophils . These cells can detect different signals in
the microenvironment and will quickly become acti-
vated in response to a nucleotide stimulating the body,
which will initiate specific immune functions ¥, Acti-
vated M1 macrophages, neutrophils, and dendritic
cells, for instance, primarily rely on glycolysis as a source
of energy . Ultimately, immune cells and tumor cells
compete locally for nutrients, with glucose primarily
being absorbed and consumed by tumor cells . T cell
function is also reduced in the NSCLC microenviron-
ment due to the competitive absorption of glucose *.
Large amounts of glucose are used in abnormal tumor
glycolysis to produce large amounts of lactate, which
builds up in tumor cells and is eventually exported to
the extracellular environment by activating monocar-
boxylic acid transporter (MCT) proteins on cell mem-
branes. As a result, an acidic tumor-immune milieu is
created "', and lactic acid may also suppress tumor im-
munity in this environment by encouraging IL-23- and
IL-17-mediated inflammation and aiding in the prolif-
eration %,

In general, activated immune cells consume gluta-
mine in amounts comparable to those of glucose. Dur-
ing immune cell proliferation, glutamine stimulates the
proliferation of immune cells by activating proteins
such as ERK and JNK kinases to induce the transcrip-
tion of genes related to cell proliferation **. Glutamine
is necessary for the growth of T and B cells, the synthe-
sis of proteins and antibodies, and it also controls the
activation of macrophages and the production and re-
lease of pro-inflammatory cytokines (including IL-1,
TNF-o0, and IL-6) ®*. Similar to this, reprogramming
glutamine metabolism is essential for both tumor and
immune cell survival. Additionally, there is competi-
tion between the two types of cells for glutamine up-
take in the TME, with tumor cells actively seeking out
glutamine. These results in a restricted glutamine sup-
ply for immune cells, which in turn affects the immune
system's ability to fight cancer ®*. In summary, these
data imply that tumor cells' use of glycolysis to pro-
duce higher concentrations of lactic acid and the result-
ing acidified TME will suppress immune cell activity
and competitively deprive immune cells of glutamine
needed for proliferation. The inhibition will impede the
synthesis of essential cytokines by immune cells, lead-
ing to the termination of immune surveillance in
NSCLC and ultimately resulting in evasion from the

Acta Physiologica Sinica, April 25, 2025, 77(2): 289-299

immune response.

4 Influence of intestinal flora on immune
cells in the TME

The communication between the microbiota and im-
mune cells is mediated by microbial metabolites, and
in the colon, carbohydrates provide a rich substrate for
bacterial fermentation. The primary metabolic byprod-
uct of this process is SCFA, which play numerous regu-
latory roles in addition to serving as a localized sub-
strate for energy production. Furthermore, the impact
of SCFA on host immunity is continuously being stud-
ied ). Histone deacetylase (HDAC) has been reported
to be a key regulator of nuclear factor-xB (NF-xB) ac-
tivity and pro-inflammatory innate immune responses,
and SCFAs can directly bind to HDAC and inhibit its
activity in tumor cells, leading to differential recruit-
ment of pro-inflammatory genes by NF-kB "°.. Tolero-
genic, anti-inflammatory cellular phenotypes are ten-
dered to be promoted by SCFA-driven HDAC inhibi-
tion, which is essential for the maintenance of immune
homeostasis. Peripheral blood mononuclear cells and
neutrophils are exposed to SCFA in a manner similar to
their exposure to overall HDAC inhibitors, inactivation
of NF-«B, and down-regulation of the production of
the pro-inflammatory cytokine TNF "', Furthermore, it
has been shown that SCFA controls the respiratory fac-
tors GATA3, oxidative phosphorylation, and glycolytic
metabolic pathways in type 2 innate lymphocytes
(ILC2s) of the lung. Dysbiosis of the intestinal flora
has also been linked to increased neutrophil recruit-
ment in the airways and the secretion of inflammatory
factors IL-5, IL-13, and IL-17a in lung ILC2s ®"*, Ac-
cording to the current research ) intestinal flora
modulates immune cells in peripheral blood by secret-
ing advantageous metabolites, which eventually reach
the lungs via the lung-gut axis and continue to stimu-
late other immune cells in the active TME. The afore-
mentioned studies show that intestinal flora plays a sig-
nificant role in lung homeostasis, but the mechanism of
action is rarely reported.

5 Immunization escape

The immune system's ability to identify and attack can-
cer cells is greatly aided by mechanisms of antigen pre-
sentation and processing. By downregulating or elimi-
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nating the expression of proteins identified as antigens
by immune cells, cancer cells create an immunosup-
pressive microenvironment in the context of cancer.
They do this by employing a number of strategies to
avoid immune cell recognition or to stifle anti-tumor

0.6 “Tumor cells use the oncogene

immune responses
c-Myc to promote their own survival when they are de-
prived of nutrients like glucose and glutamine. This on-
cogene regulates the serine synthesis pathway by con-
trolling the expression of metabolic enzymes like 3-
phosphoglycerate dehydrogenase (PHGDH), phospho-
serine aminotransferase 1 (PSAT1), phosphoserine phos-
phatase (PSPH), and other metabolic enzymes. Tumor
cells can survive because of this improved serine ab initio
synthesis and preservation of redox equilibrium .
One of the oncoproteins that is most frequently acti-
vated in human malignancies is c-Myc. The majority
of cancers have mutations in the myc gene or increased
expression of the myc-related pathway, and these acti-
vated cancers are characterized by boundless replica-
tion and continuous proliferation '**. Numerous studies
have demonstrated that c-Myc controls the metabolism
of glucose and glutamine, promoting the metabolic
transition from oxidative phosphorylation to glycoly-
sis, increasing glutamine catabolism, and promoting
adipogenesis in cancer cells. These actions enhance cel-
lular adaptation and provide cancer cells with a sur-
vival advantage Y (Fig. 2). Excess lactic acid is pro-
duced by the glycolytic process in cancer cells. This ex-
cess lactic acid helps to create an immunosuppressive
environment that supports the growth of cancer cells,
resulting in an acidic tumor immune microenvironment
and impeding immune cell function, which leads to im-

mune evasion .

6 Conclusion

Clinical research indicates that the overuse of medica-
tions such as macrolides and cephalosporins increases
the risk of lung cancer . This is likely because antibi-
otics drastically reduce intestinal flora, which in turn
alters the immune system and immune homeostasis of
the lungs through the lung-intestinal axis and raises the
risk of lung cancer '”. Research has demonstrated that
the intestinal flora of patients with lung cancer exhibits
decreased bacterial diversity, a reduction in probiotics,
and an increase in conditionally pathogenic bacteria.
The latter type of bacteria compromises the integrity of

the intestinal barrier, increasing the risk that the bacte-
ria and their byproducts will spread to other areas of
the body and aid in the formation of tumors **, A thor-
ough investigation into the relationship between lung
microorganisms and the development of lung cancer is
of little significance, despite the fact that changes in
gut flora affect the diversity of the lung microbiota and
that changes in the latter can worsen inflammation.
The composition of the lung microbiota in patients
with lung cancer has been linked to lifestyle, pollution,
and smoking . These factors may result in different
outcomes being reported. Both the quantity and per-
centage of thick-walled bacteria in the gut flora were
considerably decreased, and the energy metabolism
pathway of intestinal flora in lung cancer was found to
be changed, being dominated by glutamate metabo-
% There was also a decrease in the functional
groups involved in metabolism and sugar transport ",
These findings suggest that variations in gut flora
cause altered energy metabolism pathways in lung can-

lism

cer. Additionally, variations in the gut flora's metabolic
activity promote the course of lung cancer ",

A recent study published in Nature Metabolism dem-
onstrated ! that acetic acid is the most abundant
SCFA in human NSCLC tissues, increased acetic acid
uptake with tumor enrichment, and that NSCLC cells
take up acetic acid in a monocarboxylate transporter 1
(MCT1)-dependent manner. Acetic acid-derived and
acetyl-CoA synthetase (ACSS)-mediated acetyl coen-
zyme A production induces dihydrolipoamide S-
acetyltransferase (DLAT)-mediated acetylation of c-Myc
Lys148, which recruits ubiquitin-specific peptidase 10
(USP10) to deubiquitinate and stabilize c-Myc, leading
to enhanced expression of PD-LI, promotion of im-
mune escape of tumors, glycolysis, and cell cycle pro-
gression genes expression and acceleration of cell pro-
liferation "%,

A significant number of immune and inflammatory
cells are drawn to the lungs in the lung cancer microen-
vironment; nevertheless, tumor cells absorb a signifi-
cant amount of energy and macromolecules, such as
lipids and amino acids, that are necessary for the sur-
vival of the drawn-in cells and the upkeep of cellular
processes. Cancer cells frequently undergo metabolic
reprogramming in aerobic circumstances in order to ef-
fectively promote their continuation and development.
To satisty fast cellular proliferation, tumor cells use
glycometabolic reprogramming to make huge amounts
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of lactic acid and adequate ATP, which in turn creates
an acidic local environment that inhibits immune cell
proliferation and anticancer efficacy . Numerous PD-
1 inhibitors have been created, with Pembrolizumab/
Keytruda being the most widely utilized. This medica-
tion inhibits the binding of PD-L1 to PD-1, hence in-
ducing an immune response against tumor cells 7.
Gut flora transplantation is anticipated to change the
gut microbiota of patients who have become resistant
to anti-PD-1 monotherapy, improve their response to
immunotherapy, and provide this group of drug-
resistant patients fresh hope """,

Tumor immunotherapy, exemplified by ICI, has
revolutionized the way advanced NSCLC is treated in
recent years. Of particular note are anti-PD-1 and PD-
L1 therapeutic agents, which have the advantage of
causing fewer autoimmune side effects due to the fact
that PD-L1 is primarily expressed on the surface of tu-
mor cells and that PD-L1 binding to PD-1 occurs pri-
marily in the tumor immune microenvironment .
Even if a number of immunotherapeutic medications
have shown promising clinical outcomes, there is a
need to investigate more efficacious treatment options
due to the broad concern raised by the related side ef-
fects. Studies have demonstrated "% that gut flora plays
a significant role in the response to immunotherapy
with PD-1 inhibitors in NSCLC patients, with a signifi-
cant increase in bacterial diversity in patients who re-
sponded to anti-PD-1 therapy. While gut microorgan-
isms and metabolism indirectly influence cellular im-
mune responses in the gut and lungs. As a result, we
ought to be mindful of the application of microbiologi-
cal agents in immunotherapy, since this might result in
improved therapeutic outcomes ™",

All things considered, this work comes to the conclu-
sion that NSCLC is associated with alterations in the
intestinal flora, and that the loss of beneficial bacteria
in the intestinal flora causes a great deal of pro-
inflammatory factors to enter the lungs through the
lung-intestinal axis, thereby intensifying inflammation
in the TME. Focusing on the changes in glycolysis and
reprogramming amino acid metabolism in tumor cells
can provide a novel approch and strategy to prevent
their development and immune escape. Consequently,
a greater understanding of the host's features, the im-
mune milieu around the tumor, and the tumor cells
themselves is necessary for the development of the im-
munotherapy territory.
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