
Acta Physiologica Sinica, August 25, 2022, 74(4): 621–632
DOI: 10.13294/j.aps.2022.0064    http://www.actaps.com.cn

621

Review

Anti-epileptic/pro-epileptic effects of sodium channel modulators from 
Buthus martensii Karsch
XIAO Qian1, #, ZHANG Zhi-Ping2, #, HOU Yang-Bo1, QU Dong-Xiao1, TANG Le-Le1, 3, CHEN Li-Ji1, LI Guo-Yi1, 3, 
JI Yong-Hua2, TAO Jie1, 3, *, ZHU Yu-Dan1, 3, *

1Department of Neurology and Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 
200333, China; 2School of Medicine and School of Life Sciences, Shanghai University, Shanghai 200444, China; 3Putuo Clinical 
Medical School, Anhui Medical University, Shanghai 200333, China

Abstract: The East Asian scorpion Buthus martensii Karsch (BmK) is one of the classical traditional Chinese medicines for treating 
epilepsy for over a thousand years. Neurotoxins purified from BmK venom are considered as the main active ingredients, acting on 
membrane ion channels. Voltage-gated sodium channels (VGSCs) play a crucial role in the occurrence of epilepsy, which make them 
become important drug targets for epilepsy. Long chain toxins of BmK, composed of 60–70 amino acid residues, could specifically 
recognize VGSCs. Among them, α-like neurotoxins, binding to the receptor site-3 of VGSC, induce epilepsy in rodents and can be 
used to establish seizure models. The β or β-like neurotoxins, binding to the receptor site-4 of VGSC, have significant anticonvulsant 
effects in epileptic models. This review aims to illuminate the anticonvulsant/convulsant effects of BmK polypeptides by acting on 
VGSCs, and provide potential frameworks for the anti-epileptic drug-design.

Key words: Buthus martensii Karsch; toxin; epilepsy; voltage-gated sodium channels; receptor site

产自东亚钳蝎的钠通道调节剂的抗癫痫/促癫痫作用

肖 倩1, #，张志平2, #，侯阳波1，瞿东晓1，汤乐乐1, 3，陈黎佶1，李国毅1, 3，吉永华2，陶 杰1, 3, *，

朱宇丹1, 3, *

1上海中医药大学附属普陀医院神经内科和中心实验室，上海 200333；2上海大学医学院和生命学院，上海 200444；3安徽医

科大学普陀临床医学院，上海 200333

摘  要：东亚钳蝎(Buthus martensii Karsch, BmK)是治疗癫痫的经典中药之一，已有上千年的历史。从BmK毒液中分离纯化的

神经毒素被认为是作用于膜离子通道的主要活性成分。电压门控钠通道(voltage-gated sodium channels, VGSCs)在癫痫发生中

起着重要的作用，使其成为重要的癫痫药物靶点。BmK的长链毒素由60~70个氨基酸残基组成，能特异性识别VGSCs，其中

用于建立癫痫模型的α-样神经毒素与VGSC受体位点3结合，可诱发鼠类癫痫。而β或β-样神经毒素则与VGSC受体位点4结
合，对癫痫模型有显著的抗惊厥作用。本综述旨在阐明BmK多肽作用于VGSCs的抗惊厥或惊厥作用，同时也为抗癫痫药物

设计提供潜在的框架。
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1  Introduction 

Voltage-gated sodium channels (VGSCs) are key trans-
membrane proteins that consist of two different types 
of subunit: the pore-forming α subunit associated to 
one or two β auxiliary subunits (β1–4). As a single 
polypeptide chain, the α subunit folds to four homolo-
gous repeats (domain I–IV, D I–IV). Each domain 
contains six transmembrane helices designated S1 to 
S6. The segments S1–S4 in each domain constitute the 
voltage-sensing domain (VSD) that regulate the switch 
of the central ion-conducting pore domain (PD) 
enclosed by S5 and S6 helices [1, 2]. Due to the contribution 
to the cell membrane potential, action potential (AP) 
initiation and propagation [3, 4], VGSCs play crucial 
roles in cell excitability and the tissue-specific physio-
logy as well as pathology. In view of this, VGSCs are 
considered to become important therapeutic targets for 
treatment of a range of diseases, including epilepsy, 
pain, myotonias, cardiac arrhythmias and insufficiencies, 
as well as cancer [5, 6]. 

Nine subtypes of VGSC α subunits have been found 
in humans, including Nav1.1–Nav1.9, encoded by the 
genes SCN1A–SCN5A, and SCN8A–SCN11A, respec-
tively. A common human inherited epilepsy, generalized 
epilepsy with febrile seizure plus (GEFS+), has been 
proved to be caused by variants within α or β subunits 
from multiple sodium channel subtypes of the central 
nervous system. Genetic studies in patients with epi-
lepsy have also confirmed that the gene encoding 
VGSC produces a large number of mutations, which 
could be divided into the gain of function and loss of 
function mutations. The mutation of the Nav1.2 gene 
SCN2A is associated with various epilepsies, such as 
GEFS+, Dravet syndrome (DS), and other stubborn 
childhood epileptic encephalopathies. As reported that, 
the gain of function missense mutations in SCN2A was 
often associated with benign familial neonatal-infantile 
seizures (BFNIS) [7]. For the loss of function mutation, 
the Nav1.1 gene SCN1A is the clinically most relevant 
SCN gene for epilepsy. More than 1 200 mutants have 
been identified to be associated with epilepsy, most of 
them are febrile seizures [8]. Even when the complete 
loss of function mutations occurred in Nav1.1, myoclonic 
epilepsy of infancy would appear [9]. The SCN3A gene, 
which is located in the soma of neurons, is widely 
expressed in adult brain. It is reported that loss-of-
function of SCN3A may lead to increased seizure sus-
ceptibility [10]. Moreover, for the missense mutation of 

SCN8A, decreasing Scn8a expression in cortical excita-
tory neurons could reduce seizures. On the contrary, the 
decreasing expression of SCN8A in the thalamic reticular 
nucleus (RT) leads to absence seizures [11]. A little number 
of sodium channel mutations associated with epilepsy 
were found in SCN9A [12]. From inherited epilepsy 
models, the steady-state inactivation of sodium currents 
of CA1 neurons shifted towards depolarization and the 
value of VGSC currents increased. Similar results also 
have been observed in the local seizure model, such as 
the epileptic seizure caused by hippocampal injury [13]. 
In the convulsion model induced by pentylenetetrazol 
(PTZ), the AP duration of hippocampal neurons was 
significantly extended and the sodium conductance was 
increased. Though VGSCs are considered as therapeutic 
targets for anti-epileptic drugs, such as carbamazepine, 
phenytoin, oxcarbazepine and so on, these drugs are 
found to act on multiple-targets, which could cause 
cognitive side effects [14], neurological disorders and 
miscellaneous side effects [15]. Therefore, it is necessary 
to develop VGSC subtype modulatory agents with high 
specificity for treating epilepsy.

During the long-term evolution of species, VGSCs 
have become target receptors for many exogenous 
toxins, such as spider toxins [16], ciguatoxins [17], cono-
toxins [18], and sea anemone toxins [19]. There are at least 
six major types of exogenous toxin receptor sites on 
VGSCs [20]. Most VGSC toxins are gating modifiers 
that trap the channel in a particular stage of the gating 
segments through interacting with one or more VSDs [21]. 
Toxins alter the normal delivery of electrical signals 
ultimately leading to paralysis and even death in 
animals by regulating various functional activities of 
VGSCs, including the ion permeability and gating [22]. 
In recent years, with the development of cryo-electron 
microscopy technology, the crystal structure of VGSCs 
and the interaction with toxins have been deeply inve-
stigated, which could illuminate the interaction mode 
between drug and target, also could be used in novel 
drug-design based on the VGSC structures [23]. As 
reported, the structures of a eukaryotic Nav channel 
alone and in a complex containing an α-scorpion toxin, 
AaH2, could be observed by electron microscopy at 
3.5-Å resolution [24]. 

The Buthus martensii Karsch (BmK) scorpion is 
capable of treating nervous system diseases such as 
epilepsy, pain and hemiplegia in China from ancient to 
modern times [25, 26]. The main active ingredient of scor-
pion is considered as neurotoxins [27]. According to the 
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length, scorpion toxins are mainly divided into two 
types: long-chain peptides acting on VGSCs and short-
chain peptides targeting voltage-gated potassium chan-
nels [28]. Based on the pharmacological effects and the 
binding abilities of receptor sites on VGSC gating, 
long-chain toxins can be further classified into two cate-
gories: α/α-like scorpion toxins, which bind to the recep-
tor site 3, can inhibit the rapid inactivation of VGSCs; 
β/β-like scorpion toxins, binding to site 4, can reduce 

the current amplitude and alter the threshold of the acti-
vation to more negative membrane potentials (Fig. 1 
and 2, and Table 1). 

There are a little number of natural toxin peptides, 
like Botulinum neurotoxin E [29], with anti-epileptic 
activity. As reported, Parawixin 2, a compound isolated 
from the venom of the spider Parawixia bistriata, has 
been defined as a novel non-selective GABA uptake 
inhibitor, with anticonvulsant effects on temporal lobe 

Fig. 1. The structures of scorpion toxin peptides. A: The α/α-like scorpion toxins BmK I (PDB: 1SN1) [35] and BmK αIV [36–38] (using LQQ 
III, PBD: 1LQQ; BmK I, chimera Lqh αIT/AaH II, PBD: 1SEG; BmK α2, PDB: 2KBJ as templates) isolated and purified from Buthus 
martensii Karsch, AaH II [33] (PDB: 1PTX) isolated and purified from Androctonus mauritanicus, Lqh III [40] (PDB: 1BMR) isolated 
and purified from Leiurus quinquestriatus. The β/β-like scorpion toxins BmK IT2 [36, 41–43] (using Lqh IT2, PBD: 2I61; LQQ III, PBD: 
1LQQ; Lqh αIT A39L, PDB: 2YEO; Kurtoxin, PDB: 1T1T as templates), BmK AEP (using the same templates as BmK IT2), and 
BmK AS [38, 41, 43–45] (using Kurtoxin, PDB: 1T1T; Lqh IT2, PBD: 2I61; CsE-V, PBD: 1NRB; Ts3, PBD: 5CY0; BmK α2, PDB: 2KBJ 
as templates) isolated and purified from Buthus martensii Karsch. Lqh IT2 [41] isolated and purified from Leiurus quinquestriatus. The 
short chain scorpion toxins acting on K+ channels regulating the function of VGSCs. The toxins MarTX [46] (PDB: 1M2S) isolated and 
purified from Buthus martensii Karsch. ChTX[38] isolated and purified from Leiurus quinquestriatus. Sequence homology comparison 
is obtained by using PSI-Blast, and homology modeling of scorpion toxins is acquired by using Discovery Studio 2017 R2. B: Upper, 
multiple sequence alignment of α/α-like scorpion toxins. Middle, multiple sequence alignment of β/β-like scorpion toxins. Below, 
multiple sequence alignment of toxins acting on K+ channels regulating the function of VGSCs. Conserved residues and cysteines 
formatting intrachain disulfide bonds are in red and shadowed in yellow; residues conserved in most of the peptides are shadowed in 
blue; residues with same type of charge in most of the peptides are shadowed in green. The species of toxins are mentioned above, 
except for Lqh 15-1[47] isolated and purified from Leiurus quinquestriatus; BmTX1[48] isolated and purified from Buthus martensii 
Karsch. C: The guide tree is constructed by ALIGNX, a component of the VECTOR NTI 11.0 software suite. Scores in the brackets 
are based on the identity of the amino acids chemical properties. Upper, the guide tree of α/α-like scorpion toxins. Middle, the guide 
tree of β/β-like scorpion toxins. Below, the guide tree of short chain toxins.
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epilepsy (TLE) in rats [30]. Also, the venom from the ant 
Dinoponera quadriceps (Kempf) has the potential pro- 

and anticonvulsant effects on Swiss mice model. The 
pre-administration of the denatured venom AbDq 

Fig. 2.  The structure of VGSC and its pharmacological characterization modulated by α/α-like or β/β-like scorpion toxins.  A: The 
structure of the cardiac sodium channel Nav1.5 (PDB: 6UZ3), as an example of VGSC structure. B: The β/β-like toxin BmK IT2 
suppresses persistent currents of VGSCs on hippocampal pyramidal neurons by targeting the receptor site-4. BmK AS inhibits not 
only transient but also persistent currents of VGSCs on hippocampal pyramidal neurons via acting on the site-4. C: The α/α-like toxin 
BmK I delays the inactivation of VGSCs on hippocampal pyramidal neurons by targeting the receptor site-3. BmK αIV increases both 
transient and persistent currents of Nav1.2 via acting on the site-3. D: Topological diagram of sodium channel, and the receptor site-3 
as well as -4. 
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protected the animals against tonic-clonic seizures and 
death induced by administering bicuculline [31]. For the 
toxins acting on sodium channel regulators, BmK AEP, 
which was a scorpion peptide purified form the venom 
of BmK, displayed anti-epilepsy activity through inhib-
iting the current of Nav1.6 gating [32]. Hm1a, a spider 
Heteroscodra maculata venom peptide, was mainly 
distributed in inhibitory interneurons. It could selec-
tively enhance the activity of Nav1.1 channels [33], by 
increasing the excitatory activity of Nav1.1 interneu-
rons, but did not affect the firing of excitatory neurons. 
Thus intracerebroventricular infusion of Hm1a could 
rescue DS mice from seizures and premature death [34]. 

2  Anticonvulsant effects of β-toxins via targeting 
site-4 of VGSCs

2.1  BmK AS 
BmK AS, a β-like scorpion neurotoxin, is extracted 
from the venom of BmK. It consists of 66 amino acid 
residues, which is stabilized by four intrachain disulfide 
bonds [58]. BmK AS not only inhibits tetrodotoxin- 
sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) 
Na+ currents dose-dependently, but also causes a hyper-
polarization shift in the steady-state inactivation of 
TTX-R and TTX-S Na+ currents [59]. BmK AS was also 
observed to increase [3H]-noradrenaline release from 

hippocampal slices of rat brain and enhance the conduc-
tance of Na+ in NG108-15 cells [60]. BmK AS facilitates 
steady-state activation and inhibits slow inactivation 
by stabilizing both the closed and open states of the 
Nav1.3 channel, which might result from an integrative 
binding to two receptor sites on the VGSCs [52].

Intrahippocampal injection of BmK AS produced 
dose-dependent anticonvulsant activity in the PTZ- 
induced epileptic model [61], with inhibited seizure- 
associated behavior as well as reducded amount and 
extent of high-amplitude, high-frequency discharges 
(HAFDs) on the electroencephalogram (EEG). The 
peak sodium currents were significantly inhibited by 
BmK AS at the cellular level [25, 51]. In addition, admini-
stering the high dose of BmK AS in hippocampus 
potently suppressed the increase of c-Fos expression 
and extended the latency to status epilepticus induced by 
pilocarpine [25].
2.2  BmK IT2
BmK IT2, a β-scorpion toxin polypeptides composed 
of 61 amino acid residues with 4 disulfide bond, is 
strongly relaxing and paralyzing to poisonous insects, 
but has no obvious toxicity to mammals [62]. Injection 
of BmK IT2 at hippocampal CA1 region could inhibit 
PTZ-induced epileptic like behavior in a dose-depen-
dent manner and reduce the number, duration of HAFD 
components. Similarly, BmK IT2 significantly prolongs 

Table 1.  Examples of venom peptides from scorpion Buthus martensii Karsch acting on epilepsy-related ion channels
Peptide Number of residues Disulfide pattern Target channels IC50 or Kd Binding domain (Sites)
BmK IT2 61 CI-CVIII, CII-CV,  Hippocampal Nav [42] NR Domain II Site 4,
  CIII-CVI, CIV-CVII DmNav1 [43] (2.96 ± 0.36) μmol/L Glu896, Leu899, Gly904
BmK AEP 61 CI-CVIII, CII-CV,  Cortical Nav [28] ~2.12 μmol/L Domain II Site 4
  CIII-CVI, CIV-CVII Nav1.1 ~3.20 µmol/L
   Nav1.2 >10 µmol/L
   Nav1.3 ~1.46 µmol/L
   Nav1.6 ~0.39 µmol/L  
BmK AS 66 CI-CVIII, CII-CV,  Nav1.2 [44] NR Domain II Site4, ps.
  CIII-CVI, CIV-CVII  Nav1.3 [45] NR Domian IV Site 3
BmK I 64 CI-CVIII, CII-CV,  Nav1.5 [46],  500 ± 30 nmol/L Domain IV Site 3
  CIII-CVI, CIV-CVII Nav1.6 [47], 565 ± 16 nmol/L E1613
   Nav1.2 252 ± 60 nmol/L
   Nav1.3 214 ± 30 nmol/L 
BmK αIV 66 CI-CVIII, CII-CV,  Nav1.2 [48] ~100–500 nmol/L Domain IV Site 3
  CIII-CVI, CIV-CVII 

MarTX 37 CI-CIV, CII-CV, CIII-CVI BK (α+β4) (78.01 ± 5.86) nmol/L [49] ps. pore and β4 [50]

IC50, half maximal inhibitory concentration; Kd, dissociation constant; NR, not reported; MarTX, martentoxin; BmK, Buthus 
martentsii Karsch; ps., perhaps.
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the incubation period of status epilepticus onset, reduces 
the severity of status epilepticus and inhibits the 
expression of c-Fos in the hippocampus in the pilocar-
pine-induced epileptic model [49]. 

BmK IT2 relieves epileptogenesis and is thought to 
inhibit the activity of VGSCs. However, previous 
studies have found that BmK IT2 has no significant 
inhibitory effect on the peak currents of Nav1.2, 
Nav1.3 and Nav1.6 expressed in oocytes. However, 
binding experiments have found that BmK IT2 could 
bind to neuronal synaptosome membranes. The patch-
clamp experiment also demonstrated that BmK IT2 could 
inhibit the persistent sodium current of hippocampal 
pyramidal neurons [49]. The possible mechanism was that 
the voltage sensor toxin needed to affect the interaction 
between the channel and the membrane to perform its 
function [63]. Channel toxicology is dependent on the 
surrounding plasma membrane environment, and the 
lipid bilayer would disturb the pharmacological sensiti-
vity of VGSCs for the first time [61]. Thus the results 
from mammalian cells are more reliable than those 
from oocytes.

Studies have found that BmK IT2 and AS could inhibit 
TTX-S and TTX-R sodium currents in DRG [59, 64, 65]. 
Their main physiological significance is analgesia, but 
may cause mild pain-insensitive side effects. In the 
future, analysis of VGSC structure information [2], com-
bined with the interaction of BmK IT2 and AS with 
peripheral sodium channel Nav1.7–1.9 is good for 
constructing novel selective VGSC anti-epileptic drugs. 
2.3  BmK AEP
BmK AEP, which was composed of 61 amino acid 
residues with 4 disulfide bonds, was less toxic to mice 
and insects but had an anticonvulsant activity in rats, 
and is thus named as BmK AEP (BmK anti-epilepsy 
peptide) [66]. In a rodent model of epilepsy induced by 
coriaria lactone, BmK AEP could reduce the seizure 
rate, prolong the latent period of epileptic seizure, 
relieve seizures degree and reduce the average duration 
time of status epilepticus. BmK AEP, to a certain 
extent, had an effective anti-epilepsy activity [67].  

The recent studies have shown that BmK AEP 
suppresses neuronal excitability in primary cultured 
cortical neurons in a concentration-dependent manner 
and inhibits Na peak current in cortical neurons by 
modulating the half-maximal voltage of the activation 
of VGSCs to hyperpolarized direction without affecting 
the steady-state inactivation. In addition, BmK AEP 

dose-dependently inhibits the currents of Nav1.1, 
Nav1.3, and Nav1.6, which is heterologously expressed 
in HEK-293 and shifts the steady-state activation of 
them in the hyperpolarizing direction, with minimal 
effect on steady-state inactivation [32].

3  Epileptic seizures models constructed by 
α-toxins via targeting site-3 of VGSCs 

At present, dozens of animal models have been applied 
in the study of epilepsy [68], such as PTZ, KA and pilo-
carpine-induced models. These chemical agents have 
been shown to act mainly on voltage or ligand-gated 
channels to induce epilepsy. Scorpion peptide toxins, as 
specific sodium channel modulators, could also be used 
to construct epileptic seizures models for studying 
sodium channel-related epilepsy [69, 70]. 
3.1  BmK I
BmK I, one of the α-like toxins, is composed of 64 
amino acid residues, which is identified as specifically 
binding to receptor site-3 and prolonging the inactivation 
phase of VGSC [71]. The intrahippocampal injection of 
BmK I could induce convulsion behavior of rats and 
the expression of c-Fos is increased in the hippocampus 
after BmK I injection [70]. Nissl staining showed that 
BmK I caused significant morphological changes in the 
hippocampus of rats, resulting in the reduction of the 
number of neurons in different regions of the hippo-
campus. Calcium imaging revealed that BmK I signi-
ficantly increased the concentration of calcium and 
sodium in the synaptic membrane of rat brain, and this 
phenomenon could be completely inhibited by TTX [70]. 
The results suggested that BmK I could induce the 
increase of intracellular sodium and calcium concentra-
tion by modulating VGSCs, enhance the excitability of 
neurons and induce the convulsion in rats. The epileptic 
model of BmK I could be used as a novel experimental 
animal model for the study of VGSCs associated- 
epileptic seizure and the development of novel anti-
epileptic drugs.
3.2  BmK αIV
BmK αIV, a novel VGSC modulator, was cloned from 
BmK venomous glands and heterologously expressed 
in Escherichia coli. The mature polypeptide of BmK 
αIV, containing 66 amino acid residues, has forceful 
toxicity in mice and cockroaches. The study showed 
that BmK αIV could bind to both cerebrocortical syn-
aptosomes of rat brain and neuronal membranes of 
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cockroach, and shared similar binding sites with AaH 
II, a classical α mammal neurotoxin from Androctonus 
australis Hector [55]. Intracerebroventricular injection of 
BmK αIV could induce rat behavioral seizure, which 
has a similar pharmacological effect to BmK I. Unlike 
BmK I, BmK αIV has been found to bind to cerebro-
cortical synaptosomes of rat brain, suppressing the 
inactivation phase and increasing the steady-state and 
pick currents of rNav1.2 [72]. BmK αIV also could 
increase the intracellular calcium and sodium concen-
tration and induce the release of glutamate from rat 
cortical synaptosomes, and its effect could be completely 
inhibited by TTX. Therefore, BmK αIV is expected to 
be a useful tool for studying neurological diseases such 
as epilepsy caused by abnormal sodium channel func-
tion and the neuroexcitatory imbalance [73].

4  Anti-epileptic effects of potassium channel 
toxin by regulating the function of VGSCs

BK channels, Ca2+ and/or voltage activated K+ channels 
with the large conductance [74], have been demonstrated 
to regulate the rapid spike repolarization and the fast 
after hyperpolarization (fAHPs) in many classes of 
neurons [75]. However, in particular cases, by limiting 
the inactivation of Nav channels, BK channels induce 
neuronal spike shortening, increase firing rate and exci-
tatory transmitter release, which could exacerbate 
seizure bursts [76].

In human beings, mutations in BK channels that lead 
to a gain of function phenotype are implicated in the 
pathophysiology of idiopathic-generalized epileptic 
seizures. In experimental studies, the BK β4 subunit 
knockout (KO) mice  display TLE behavior associated 
with a gain of function phenotype in BK channels, with 
both sharpening APs and higher firing frequency in 
hippocampal DG granule cells [77, 78]. 

It is noteworthy that martentoxin, a polypeptide con-
sisting of 37 amino acid residues, can selectively block 
iberiotoxin-insensitive neuronal BK channels (α+β4) [79] 
and has no significant effects on BK channels with α 
subunits alone [56]. In animal model experiments, 
recombinant martentoxin (rMarTX) [80] could prolong 
the latency, decrease the duration time, and the number 
of seizures, especially the high stage seizure, induced 
by PTZ. The amplitude and the duration of epileptic 
discharge were both decreased [57, 81]. In addition, 
martentoxin could significantly increase the latency 

time of seizure, reduce seizure duration and numbers in 
PTZ-treated rats, inhibit hippocampal hyperexcitability, 
and display neuroprotective effects in hippocampal 
neurons [57].

5  Perspectives

Up to now, 15 toxin-derived drugs have been used to 
treat a variety of diseases in clinic, including hyperten-
sion, diabetes and pain. Many lives have been saved by 
them. Moreover, at least 30 animal-derived toxins are 
considered to be drug candidates, which have entered 
clinical trials [82]. Among them, scorpion toxin chloro-
toxin (CTX), isolated from Leiurus quinquestriatus, is 
under phase II clinical trial. It was reported that 
Iodine-131-chlorotoxin (TM-601) is a targeted drug 
candidate for the treatment of gliomas because it could 
cross the blood-brain barrier as well as some tissue 
barriers and specifically bind to malignant brain tumor 
cells without influencing the function of normal cells [83]. 
ShK derivatives, ShK-186 and ShK-192, are mainly 
used to treat autoimmune diseases, including neuroin-
flammatory multiple sclerosis by targeting Kv1.3 channels. 
However, the mechanism of epilepsy is still unclear, 
and the effect of clinical treatment is limited. After the 
treatment of common anti-epileptic drugs, about 30% 
of patients still develop into intractable epilepsy (IE) [84]. 
But scorpion and scorpion venom have remarkable 
effects in treating IE, and our previous study had 
showed that compound Dingxian pill, which containing 
scorpion, has been used as an anti-epileptic agent in 
China from ancient to modern time [85]. It was worth 
noting that the side effects of current common anti- 
epileptic drug could not be ignored, for instance, hema-
totoxicity [86], low bone mineral density [87] and liver injury [88] 
of the treatment of sodium valproate (VPA), nausea and 
vomiting of the carbamazepine [89, 90] and so on. 

In addition, a good specificity of scorpion toxins has 
been also exhibited. Not only the epileptic seizure model, 
but also the chronic epileptogenesis model could be 
established by BmK I (or BmK αIV) [70, 73]. BmK I (or 
BmK αIV) as a sodium channel-specific modulator [91], 
could simulate the clinical symptoms of human GEFS+ 
by mediating the sodium channel function acquisition 
type mutation [92, 93]. 

In this review, we discussed the possibility of BmK 
scorpion toxins for clinical treatment on ion channel- 
relevant epilepsy. It is shown that long-chain scorpion 
toxins, such as BmK IT2 and BmK AS, and short-chain 
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scorpion toxin MarTX could effectively suppress 
neuroexcitability in epileptic seizure via VGSCs or BK 
channels. This brings the dawn to the effective control 
of intractable epilepsy or epileptogenesis suspected to 
be overcome. However, it is still a challenge for BmK 
toxins to be used to the treatment of this neurological 
disorders. The first problem underlying the application 
of these peptides is that they could not be taken orally, 
mainly because they are difficult to penetrate the intes-
tinal mucosa. Due to their molecular size, polarity, 
hydrophilicity, and chargeability, the cell membrane 
penetration of BmK toxins is hampered. The second 
obstacle is that BmK toxins cannot cross the blood-
brain barrier. Different from multiple sclerosis, the 
myelin and blood-brain barrier are not destroyed in 
other neurological diseases [94]. Clinical application of 
BmK toxins for treating these diseases will encounter 
difficulties. Fortunately, the situation is not unsolvable, 
and we still have a glimmer of light. A few years ago, 
scientists at the Sunnybrook Health Science Center in 
Canada used focused ultrasound technology to success-
fully pass chemotherapy drugs across the blood-brain 
barrier in a non-invasive manner [95] and reach the loca-
tion of the tumor, which is of great significance in the 
field of neuropharmacology. In addition, the cell pene-
trating peptide (CPP) [96] with a strong cell membrane 
penetration, could be used as a drug carrier to assist the 
passage of polypeptide drugs across the cell membrane [94]. 
The fusion protein consists of CPP and BmK toxin 
might be developed as an oral drug for treating epilepsy. 
In short, finding suitable, safe, and efficient ways to 
promote the clinical use of BmK toxins are most valuable 
points to be solved.
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