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Abstract: The non-invasive recording of brain activity with functional brain imaging greatly advances our understanding of human 
cognition. At the meantime, more powerful multivariate analysis methods are being developed to compensate the limited capability of 
traditional univariate approaches. In this review, I will introduce the development of these multivariate methods for functional mag-
netic resonance imaging (fMRI), the dominant brain imaging technique used in cognitive neuroscience society. The physiological ba-
sis of this analysis approach and its future directions will be discussed as well.
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摘  要：利用非侵入式的功能性脑成像记录大脑活动极大地提升了我们对人类认知功能的理解。与此同时，分析成像数据的

手段也逐渐从传统的一元方式向更加有效的多元分析转变。在本综述中，特别针对在认知神经科学领域占主导地位的功能

性磁共振成像技术，介绍其多元数据分析方法的发展以及这种分析方法的生理学基础和未来发展方向。
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1  Introduction

In recent decades, one of the most significant develop-
ments in human neuroscience is the application of 
functional brain imaging techniques. The majority of 
such techniques are non-invasive that they measure 
brain activity indirectly either by estimating the con-
sumption of oxygen in cerebral blood flow, for example 
functional magnetic resonance imaging (fMRI), or by 
recording the scalp electric (electroencephalogram, 
EEG) or magnetic (magnetoencephalogram, MEG) 
field potentials produced by population neural activity 
inside the brain. These techniques have added tremen-
dous values to various fields of neuroscience research 

ranging from sensory processing to social cognition. 
This is particularly true when human subjects are used 
in the experiments. 

Among these techniques, fMRI emerged to be the 
most dominant measurement tool for investigating the 
human brain functions. fMRI measures the neural ac-
tivity related hemodynamic response in the cerebral 
blood flow via blood-oxygen-level-dependent (BOLD) 
contrast[1]. The data collected from fMRI experiments 
are generally analysed with univariate statistical meth-
ods such as general linear model (GLM) in order to in-
fer the cognitive functions underlying the recorded sig-
nals[2]. In this way, the recording units, i.e. the voxels 
(volumetric pixel), share the same experimental design 
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but are analysed independently. Statistical hypotheses 
are tested separately for each voxel, and the resulting 
statistical parametric maps are corrected for multiple 
comparisons before further theoretical interpretation. 

Despite the great success of GLM in fMRI research, 
the limitation of this univariate approach has also ap-
peared. A major concern comes from the ignorance of 
spatial information of fMRI signal in the GLM frame-
work. That is, a collection of spatially clustered voxels 
or different voxel clusters from spatially separated 
brain regions may contribute to specific sensory or cog-
nitive functions, and such correlation is not included in 
the single voxel based GLM analysis. To overcome this 
limitation, in recent years, fMRI researchers started to 
introduce multivariate methods for fMRI experi-
ments[3–12]. The following sections will provide a review 
on this emerging approach together with its physiologi-
cal basis and the practical consideration that has to be 
taken into account by the experimenters.

2  Multi-voxel pattern analysis (MVPA)

The multivariate approach for fMRI data analysis has 
been specifically termed as MVPA and is widely ap-
plied within neuroscience society when human subjects 
are used for the purpose of the research[13–15]. In general, 
MVPA uses pattern classification algorithms that can 
extract diagnostic information from multi-dimensional 
space and separate data samples into different class-
es[16]. Thus, the idea behind MVPA is the belief that 
multiple voxels contain more information about the ex-
perimental manipulation whereas single voxels show 
only small response biases which can not be signifi-
cantly detected with traditional GLM analysis. While a 
pattern classifier is chosen, the small biases from multi-
ple voxels are pooled together, and the data samples 
from different experimental conditions are separated in 
a high-dimensional space by training the classifier with 
part of the whole data set. Leave one out cross-valida-
tion procedure is required when estimate the perfor-
mance of the pattern classifier (i.e. the separability of 
the fMRI signal from different conditions). To achieve 
this, the data are divided into portions with equal size. 
At each cross-validation, one portion is left as valida-
tion set, and all the other portions together with the cor-
responding class labels are used as the training set to 
optimize the classifier. After being trained, the classifier 
is used to predict the class labels of the data samples 
from the validation set, and the accuracy of the predic-

tion is calculated by comparing with validation set’s 
original labels. The mean accuracy of all cross-valida-
tions is compared with chance level (e.g. 50% correct 
for binary classification), and the subsequent interpreta-
tion of the results is concluded in conjunction with ana-
tomical constrains and experimental hypotheses. 

While the number of voxels from the whole brain 
scans can reach few hundreds of thousands, the number 
of experimental trials is rather limited. Even if region 
of interest (ROI) is defined, the number of voxels in-
side a single region can be up to a thousand. The large 
ratio of the number of voxels to the number of experi-
mental trials poses serious problem for pattern classifi-
cation algorithms so that the classifier can be easily 
over-fitted. The generalization capability of the classifi-
er thus can be reduced by introducing uninformative 
voxels during the training stage. Therefore, voxel selec-
tion is commonly used in MVPA-based analysis as a 
preprocessing step to reduce the dimensionality of the 
input space.  The choice of the voxels can be critical 
for the final performance of the classifier. In practice, 
ranking voxels can be achieved by comparing univari-
ate signal between experimental conditions with base-
line period and select certain number of most respon-
sive voxels.  The other option is to choose the voxels 
showing largest differential responses between the con-
ditions to be classified. The latter approach is more 
sensitive, but the voxels can be selected only based on 
the training data set[17]. 

MVPA has been applied in experimental research on 
different cognitive levels. At the early sensory level, 
Haynes and Rees[5] provided the first evidence that 
fMRI signal in V1 contains reliable information about 
the orientation of the stimuli, and these orientations can 
be decoded with pattern classifier even if the stimuli 
were invisible due to the masking effect. Kamitani and 
Tong[12], on the other hand, showed that in addition to 
the orientation information, BOLD signal in early visu-
al cortex can also tell us about participants’ subjective 
perception. For higher perceptual functions, several 
studies investigated the neural representation of object 
categories (such as faces, houses, chairs) in the human 
brain with MVPA methods[3, 4, 9, 18, 19]. These studies have  
demonstrated that spatially distributed patterns in hu-
man higher visual cortex encode the category informa-
tion[14]. In another study, Li et al.[8] developed a novel 
paradigm that dissociated two dimensions of features 
with a factorial classification analysis, and their results 
have demonstrated a network of cortical and subcorti-
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cal regions that is involved in representing behaviorally 
relevant features to support the rule-based visual cate-
gorization. Furthermore, Chen et al.[20] developed a be-
havior-constrained classification algorithm for fMRI 
data analysis based on support vector machine (SVM) 
that can be adapted in the experiments involving be-
haviorally relevant perceptual tasks. In addition to the 
perceptual experiments, MVPA has also been used to 
decode the intention[6], fear[21], language[22], reward-
based decision making[23], and other high level cogni-
tive functions, making this technique a potential tool 
for investigating general human cognition. 

3  The physiological basis of MVPA

The great capability of multi-voxel pattern classifier on 
detecting subtle response differences between neuronal 
populations was referred as ‘hyperacuity’. It is general-
ly believed that, at least in the level of primary visual 
cortex, the columnar architecture is the source of the 
high performance that the classifier has obtained with 
standard resolution of BOLD signal. Under such reso-
lution (e.g. 3 mm × 3 mm × 3 mm), each voxel samples 
multiple orientation columns that differ in their pre-
ferred orientations. This will cause a voxel to be re-
sponsive to many orientations but the strength of the 
responses varies across orientations due to uneven sam-
pling. Such aliasing effect is what the classifier pools to 
exploit the high spatial frequency information in the 
subvoxel resolution[24]. 

Recently, the hypothesis of ‘hyperacuity’ was chal-
lenged by other researchers who proposed that spatial 
smoothing does not hurt the performance of MVPA. 
According to the ‘hyperacuity’ hypothesis, the spatial 
smoothing will contaminate the fine scale information 
contained in the voxels population that is incorporated 
by the pattern classifier. Op de Beeck[25, 26] investigated 
the effect of spatial smoothing on MVPA and found 
that smoothing does not decrease the sensitivity of 
MVPA. He suggested the possibility that the biases in 
voxels’ responses exist at multiple scales. While this 
proposal is still under debate[27], further investigation 
on the spatiotemporal properties of BOLD signal is re-
quired to address this controversy[28]. 

4  Practical consideration

There are several practical issues to be considered 
when analysing fMRI data with MVPA methods. First, 

if there is strong univariate signal, that is, a significant 
activation from GLM analysis, the multivariate meth-
ods become less necessary. Thus, testing the contrast 
with conventional GLM before conducting the MVPA 
is a good practice for all experiments. 

Second, while most of the MVPA studies applied lin-
ear classifier to simplify the interpretation of the result, 
nonlinear classifiers also attracted increased atten-
tion[3, 11, 29, 30]. In machine learning, nonlinear classifiers 
are generally believed to provide better performance 
when compared with its linear counterpart. But this 
trend seems to be reverse when testing the fMRI signal 
with MVPA methods, although there are cases that non-
linear classifier can give higher accuracies[29]. Overfit-
ting of the noisy BOLD signal might be the major driv-
ing factor for this unexpected phenomenon, but more 
evidence needs to be cumulated before making a con-
clusive claim.

Third, MVPA can be enhanced by introducing prior 
physiological knowledge. This is particularly true when 
the studied questions relate to the better understood 
sensory and perceptual processing. Kay et al.[31] devel-
oped an encoding method with quantitative receptive 
field models that characterize the tuning properties of 
voxels in early visual areas. The models were based on 
Gabor wavelet pyramid which is the standard model of 
primary visual cortex in neurophysiology research. By 
taking this prior knowledge into account, this biologi-
cal inspired method gives decoders superior power on a 
natural image identification task. In another study, a 
combination of local image bases of multiple scales 
was used to reconstruct simple image patterns from 
fMRI activity of early visual area[32]. Further investiga-
tion along this line of research may lead us to better de-
coding capability of mental states from functional brain 
imaging signal.

5  Conclusion

The future of the MVPA methods points two directions 
for the cognitive neuroscience investigators. First, we 
need deeper understanding of the biological basis un-
derlying the high performance of MVPA. This, in a 
broader sense, comes from the complete knowledge of 
the nature of the fMRI signal. Second, more advanced 
computational algorithms are to be developed to help 
the investigators to extract more useful information 
from fMRI signal in various kinds of experiments. 
These algorithms have to be specific for the design of 
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fMRI experiments and the nature of the BOLD signal.
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