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Immunoregulatory effects of homocysteine on cardiovascular diseases
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Abstract: Hyperhomocysteinemia (HHcy) has been recognized as an independent risk factor for atherosclerosis for more than 30
years, but the mechanisms by which HHcy leads to atherosclerosis are not well fully understood. In this review, we will summarize the
immunoregulatory effects of homocysteine on cardiovascular diseases from humoral immunity, monocyte/macrophage and T lympho-
cyte activity. Homocysteine can induce chemokine and cytokine secretion in monocytes and T lymphocytes and also directly stimulate
B lymphocyte proliferation and IgG secretion. In addition, the cellular mechanisms that may explain the pro-inflammatory effect of
HHcy are included. Homocysteine may directly or indirectly lead to oxidative stress or endoplasmic reticulum (ER) stress. Elevated
levels of homocysteine also decrease the bioavailability of nitric oxide and modulate the levels of other metabolites including S-adenosyl
methionine and S-adenosyl homocysteine which may result in cardiovascular diseases.
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同型半胱氨酸在心血管疾病中的免疫调节作用
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摘  要：高同型半胱氨酸血症是动脉粥样硬化的独立危险因子，但是其致病机制尚未完全阐明。本文将从体液免疫、单核

巨噬细胞以及T 细胞活性等几方面归纳总结同型半胱氨酸在心血管疾病中的免疫调节作用。同型半胱氨酸可以诱导单核细胞和

T 细胞分泌趋化因子和细胞因子，还可以直接刺激 B 细胞增殖及 IgG 分泌。此外，本文还总结了高同型半胱氨酸致炎作用的

细胞内机制。同型半胱氨酸可以直接或间接导致氧化应激或者内质网应激，还可以降低一氧化氮的生物活性，影响包括 S- 腺
苷蛋氨酸和 S - 腺苷同型半胱氨酸的水平，从而导致心血管疾病的发生。

关键词：同型半胱氨酸；炎症；心血管疾病

中图分类号：Q 2 5

1  Introduction

Atherosclerosis is the leading cause of cardiovascular mor-
bidity and mortality in the world. It is not simply an inevi-
table degenerative consequence of aging but is, rather, a
chronic inflammatory disease. The inflammation theory of
atherosclerosis was raised by Virchow in 1856 for the first
time. And it is now widely recognized as a disease charac-
terized by inflammatory reaction in the inner-wall of large-
and medium-sized arteries, especially in areas of arterial

branching and non-laminar blood flow. There are many
kinds of immune cells can be detected in atherosclerotic
lesions, such as monocytes/macrophages, T lymphocytes,
mast cells and few B lymphocytes. Leukocyte recruitment
and expression of pro-inflammatory cytokines may accele-
rate inflammatory reaction further[1].

Hyperhomocysteinemia (HHcy) has been recognized as
an independent risk factor for atherosclerosis for more
than 30 years, but the mechanisms by which HHcy leads
to atherosclerosis are not well fully elucidated[2]. In this
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cells are activated and are capable of producing various
adhesion molecules and chemokines such as, vascular cell
adhesion molecule (VCAM-1)[9,10], intercellular adhesion
molecule-1 (ICAM-1)[11], E-selectin[10], P-selectin[12], β1-
integrin[13], interleukin-8 (IL-8)[10,14], monocyte chemoattractant
protein-1 (MCP-1)[14] that participate in inflammatory reac-
tions in the arterial wall. Hcy also activates IκB-α resulting
in nuclear translocation of NF-κB and enhanced NF-κB/
DNA interaction in endothelial cells, thus, causing an im-
balance in intracellular signaling.

Endothelial dysfunction ultimately loses a balance be-
tween the magnitude of injury and the capacity for repair.
A variety of evidence suggested that circulating endothelial
progenitor cells (EPCs) constituted one aspect of this re-
pair process[15,16]. Hcy impaired EPC proliferative, migratory,
adhesive and in vitro vasculogenesis capacity[17]. HHcy may
induce the reduction in EPCs with decreased functional
activity. HHcy not only directly impairs endothelial cells
but also affects EPC number and function simultaneously,
thus influence endothelial repair process and disturb the
balance between the magnitude of injury and the capacity
for repair, which lead to endothelial dysfunction.

4   Monocyte/macrophage activity

The recruitment of monocytes/macrophages into the artery
wall is one of the earliest and key events in the pathogene-
sis of atherosclerosis. The cell recruitment is mainly regu-
lated by adhesion molecules and chemokines. The most
notable chemokines MCP-1, a prototype of CC chemokines,
and IL-8, a prototype of CXC chemokines, were found to
be highly expressed in human atherosclerotic lesions which
stimulate the migration of monocytes, T lymphocytes and
neutrophils into the intima of the arterial wall[18]. Gu et al.[19]

reported that the absence of MCP-1 greatly decreased the
lesion size in LDLR-/- mice. Similarly, the absence of MCP-1
receptor and CC chemokine receptor 2 (CCR2) caused a
reduction in lesion size in apoE-/- mice[20].

Previous studies have suggested that Hcy could induce
expression and secretion of MCP-1 and IL-8 in human
aortic endothelial cells and smooth muscle cells[14,21]. Our
group pays more attention to the macrophages in human
lesions. Because MCP-1 and IL-8 have been shown to be
expressed mainly by macrophages in human lesions, and
activated macrophages in plaque in response to pathologic
agents, such as Hcy, may play an important role in the
production of MCP-1 and IL-8. We and others both re-
ported that Hcy could induce MCP-1 and IL-8 secretion in
human monocytes and THP-1 cells[21,22]. Our study

review, we will summarize the immunoregulatory effects
of homocysteine (Hcy) on cardiovascular diseases. In
addition, the cellular mechanisms that may explain the pro-
inflammatory effects of HHcy are included.

2  Overview of Hcy and vasculature

Hcy was first described by Butz and du Vigneaud in 1932[3].
An association between elevated Hcy levels and human
diseases was first suggested in 1962 by Carson and Neil[4].
They had found high concentration of Hcy in the urine of
some children with mental retardation. The elevated Hcy
levels in these patients were caused by severe enzyme de-
fects blocking the Hcy metabolism. The inborn error of
Hcy metabolism which caused homocystinuria was later
found to be associated with premature occlusive cardio-
vascular diseases, even in childhood, and about 25% of
the patients died before the age of 30 in cardiovascular
events. Since McCully, in 1969, linked elevated plasma
Hcy concentration with vascular diseases, many investi-
gations have been conducted to find the mechanisms by
which atherothrombotic complications were induced in
HHcy[5]. HHcy is now defined as a pathological condition
characterized by an increase in plasma concentration of
total Hcy that is higher than 15 µmol/L. Pathophysiologic
harmful effects of HHcy are very complex, including (1)
causing endothelial injury or dysfunction; (2) inducing the
proliferation of vascular smooth muscle cells; (3) promot-
ing platelet accumulation and platelet-rich thrombus
formation; (4) impairing bioavailability of nitric oxide (NO)
and so on.

3  Endothelial cells interact with blood cells

Endothelial dysfunction is commonly detected in the early
stage of atherosclerosis. Hcy has direct toxic effect on
endothelial cells. The von Willebrand factor (vWF) and
thrombomodulin (TM) can be detected in the plasma of
HHcy patients[6]. At the meanwhile, pyridoxine plus folic
acid treatment appears to ameliorate endothelial dysfunc-
tion through normalizing Hcy metabolism in these patients.
Many studies using animal models and human subjects
have demonstrated that HHcy impaired flow-mediated
endothelium-dependent vasodilatation by inhibiting endo-
thelium-derived NO[7]. Moreover, Hcy could induce cell
cycle G1 phase arrest in endothelial cells via inhibiting the
PI3K/Akt pathway[8].

In normal status, there are few white blood cells adher-
ing to endothelial cells. On Hcy-induced injury, endothelial
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demonstrates that Hcy significantly enhances MCP-1 and
IL-8 in healthy human monocytes that can increase leukocyte
chemotaxis. The intracellular oxidative products and sub-
sequent activation of multiple signaling mediators, includ-
ing MAPKs and NF-κB, are involved in the effects of Hcy
in human monocytes. Our another study suggests that the
MCP-1 level is apparently elevated both in the plasma and
the monocyte in response to low-dose of endotoxin in the
patients with angiographically confirmed coronary artery
disease with mild HHcy[23]. Holven et al.[24] and we[23] re-
ported that folic acid treatment reduced release of
chemokines from peripheral blood mononuclear cells in
HHcy patients by reducing plasma Hcy levels, but did not
have direct effect on human moncytes at such low-dose
of folic acid. These data suggest that Hcy might exert its
atherogenic effect by enhancing inflammatory response
of immunocytes in the blood vessels. Lipopolysaccharide
(LPS) stimulation of TNF-α synthesis by peritoneal mac-
rophages was inhibited by S-adenosyl-L-homocysteine
hydrolase inhibitor, and treatment with S-adenosyl-L-
homocysteine hydrolase inhibitor resulted in a modest de-
crease in major histocompatibility complex class II (MHC-II)
determinant expression by IFN-γ-activated macrophages,
while the expression of other cell surface markers was not
altered[25]. The processing of antigen and its presentation
by MHC-II-positive macrophages to a T-cell hybridboma
was also not affected[25,26].

In methionine-rich diet-induced moderate HHcy animal
model, the adhesion of monocytes to endothelial cells is
also significantly increased, and folic acid treatment can
also inhibit the adhesion[10,11]. β2-integrins including LFA-1,
p150/95 and Mac-1 play an important role in adhesion of
monocytes to endothelial cells. Sotiriou et al.[27] reported
that through its apo(a) moiety lipoprotein(a) specifically
interacts with the β2-integrin Mac-1, thereby promoting
the adhesion of monocytes and their transendothelial mi-
gration in a Mac-1-dependent manner and the interaction
between Mac-1 and lipoprotein(a) was strengthened in the
presence of Hcy. These findings can illustrate why both
lipoprotein(a) and Hcy were present in women, and the
associated risk for cardiovascular diseases was greater than
what would be expected if these two risks were simply
acting independently[28].

5   T lymphocyte activity

Substantial evidence suggests that cellular immune system
is involved in atherogenesis. Atherosclerosis fulfills many
criteria of a chronic inflammatory process. It is recognized

that T lymphocytes accumulate in the lesions during the
earlier stages of atherosclerosis, perhaps even preceding
monocytes. In the advanced atherosclerotic plaque, T lym-
phocytes represent up to 20% of the cells, 10% of which
are in an activated state[29]. Once resident in the arterial
intima, the T cell may encounter antigens such as oxidized
low-density lipoprotein (ox-LDL) and heat-shock proteins
(HSPs) of endogenous or microbial origin. Upon activa-
tion by engagement of the receptor and antigen, the T cell
can produce cytokines that can influence the behavior of
other cells present in the atheroma. Notably, CD154 bind-
ing to CD40 ligand, particularly on macrophages, may in-
duce the expression of tissue factor, matrix metallo-
proteinases (MMPs) and pro-inflammatory cytokines. The
production of these mediators provides an amplification
loop resulting from crosstalk between the prototypical cell
of acquired immunity (the T lymphocytes) and that of in-
nate immunity (the mononuclear phagocytes). Within the
atheroma, as in other tissues, the helper T cells can pola-
rize into those secreting generally pro-inflammatory
cytokines (known as TH1 cells) and/or those secreting
predominantly anti-inflammatory cytokines (denoted TH2
cells). In general, TH1 cells predominate in the atheroma.
But experimental data in mice suggest that with extreme
levels of hypercholesterolaemia the balance may shift to-
wards TH2 predominance. Recent evidence indicates that
in abdominal aortic aneurysms, TH2 cytokines predomi-
nate in contrast with the situation in occlusive atheroscle-
rotic disease.

Several lines of evidence have suggested that Hcy may
exert a stimulatory effect on T cell functions. First, our
group reported that Hcy potentiated Con A-induced proli-
feration and inhibited cellular apoptosis in mouse spleen T
lymphocytes. ApoE-knockout mice with HHcy had an en-
hanced susceptibility of T cell mitogen-induced T lympho-
cyte proliferation and secreted IFN-γ and IL-2 compared
to the control group. Hcy increased the production of reac-
tive oxygen species (ROS) from T lymphocytes. The po-
tentiating effect of Hcy on Con A-induced T lymphocyte
proliferation was significantly reduced by antioxidants[30].
The study of our group in HHcy patients showed that the
plasma level of RANTES (regulated upon activation nor-
mal T cell expressed and secreted), mainly secreted from
T lymphocytes was higher than that in non-HHcy control
group[24,31]. Second, subjects with folic acid or vitamin B12
deficiency, in which Hcy levels become quite elevated,
demonstrate an increase in frequency of circulating
lymphocytes, suggesting that nuclear fragmentation and
micronuclei elevated plasma levels of Hcy. It has been
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observed in several diseases where there is altered immune
function including HIV, common-variable immuno-
deficiency, systemic lupus erythematosus, inflammatory
bowel disease and rheumatoid arthritis. Finally, Hcy has
been shown to be quite cytotoxic to cells in culture and
may be one of the underlying causes of its postulated role
in atherogenesis and neuronal degeneration[32]. Dawson et
al.[32] also reported that Hcy could activate T lymphocytes
and induce cytokine secretion, especially type 1 cytokines,
including IFN-γ、IL-2、TNF-α and IL-10 but not type
2 cytokines IL-4 or IL-5 (Fig.1). The precise mechanism
involved in the generation of these cytokines is still under
investigation but they believe the Hcy effect is being
mediated, in part, by specific stress-associated signals post
Hcy treatment.

6  Humoral  immunity

Humoral immune system is also involved in the atherogenesis.
Previous studies reported the presence of B lymphocytes
in every stage of atherosclerotic lesions[33]. Adventitial in-
flammation in atherosclerosis has long been recognized,
and the presence of B lymphocytes was described in 1981[34].
Immunoglobulin-secreting B cells, immunoglobulins and
C5b-9 terminal complexes resulting from the activation of
the complement system have all been detected in human
atherotic lesions, and IgG and IgA levels are significantly

higher in the fibrous plaque intima[35]. In lesions of hyper-
cholesterolemic rabbits and mice, B cells are relatively
abundant, and clones of immunoglobulin-producing cells
can be found[36]. In humans and animals, IgG accumula-
tion is prominent in lesions[37] . B cells also participate in
atherosclerosis in ApoE-knockout mice; thus, these cells
may accumulate through VCAM-1 expression from sur-
rounding cells and may produce antibodies and pro-inflam-
matory cytokines[38].

According to our previous results, Hcy not only acti-
vates resting B lymphocyte proliferation but also acts as a
modulator to potentiate LPS-induced B lymphocyte
proliferation. ApoE-knockout mice with HHcy showed sig-
nificantly increased B cell proliferation in response to LPS.
The ROS generated by thiol (–SH) auto-oxidation of Hcy
are essential, and PKC, p38 MAPK and NF-κB are involved
in Hcy-induced B lymphocyte proliferation. Hcy also sig-
nificantly increased the production of IgG antibodies from
resting B lymphocytes[39]. Furthermore, Hcy-induced for-
mation of ROS, activation of NF-κB, and secretion of IgG
could be inhibited by the liver-X receptor (LXR) agonist
TO 901317. HHcy may increase B lymphocytes suscepti-
bility to inflammatory progression of atherosclerotic lesions.
Recent evidence shows that autoantibodies may specifi-
cally recognize the N-Hcy-Lys epitope on Hcy-containing
proteins in humans[40]. Therefore, Hcy may act as an anti-
gen that stimulates B lymphocytes to produce specific
antibodies.

The role of B lymphocytes in HHcy remains unclear.
Hansson and colleagues[37] have shown the accumulation
of IgG and complement factor C3 in the human arterial
endothelium and atherosclerotic lesions. In contrast, pro-
tective immunity seems to be associated with the develop-
ment of IgG antibodies to ox-LDL, although this finding
remains controversial[41].

7  Potential cellular mechanisms

7.1  Oxidative stress
The presence of superoxide anions was detected in the
aortic wall of HHcy mice[42]. There are two pathways in
Hcy-induced oxidative stress. The reactivity of the sulfhy-
dryl group of Hcy has been implicated in molecular mecha-
nisms underlying the increased risk of atherosclerosis and
thrombosis, ROS generated by thiol (–SH) auto-oxidation
of Hcy can damage cell ability; Hcy can also inhibit cellular
anti-oxidant effect. The auto-oxidation of thiol produces
many kinds of ROS, including superoxide anion, hydro-
gen peroxide and hydroxy. These ROS damage protein

Fig.1. Summary of effects of Hcy on T cell function. Hcy is a T cell
activator facilitating T cell proliferation, expansion and inducing
cytokine secretion at certain concentration and significant apoptosis
at other concentration[32].
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structure, affect enzyme activity and induce cell disfunc-
tion which in turn accelerate the toxic effect of ROS.
Moreover, ROS are a second messenger which can regu-
late different signal pathways. In endothelial cells, Hcy-
induced ROS activate ERK1/2, Src, Syk and NF-κB and
then affect downstream molecules[43]. Our previous study
reveals that the NADPH oxidase-dependent ROS activate
a signaling pathway involving NF-κB mediating Hcy-
induced MCP-1 and IL-8 secretion from human monocytes
in vitro[5]. And our recent report provides direct evidence
to demonstrate the role of Ref-1 which is a ubiquitously
expressed bifunctional protein involved in repairing DNA
damage and facilitating the DNA binding ability of many
redox-sensitive transcription factors, including AP-1 and
NF-κB in HHcy-accelerated atherosclerosis by promoting
MCP-1 secretion[44]. Our results validate that in monocytes/
macrophages, Hcy promotes ROS production via NADPH
oxidase, which induces the translocation and upregulation
of Ref-1. Ref-1 in turn enhances the DNA binding ability
of NF-κB, thereby increasing the expression of its corres-
ponding target genes, such as MCP-1. These data suggest
that HHcy, together with hypercholesterolemia, can acce-
lerate atherosclerotic lesion formation by promoting MCP-1
secretion via Ref-1.
7.2  NO
The loss of NO bioactivity also contributes to endothelial
dysfunction in mild HHcy. There is increasingly compel-
ling evidence that thiols react in the presence of NO and
endothelium-derived relaxing factor (EDRF) to form S-
nitrosothiols, compounds with potent vasodilatory and
antiplatelet effects[45]. Hcy directly modulates vascular func-
tion by reducing NO bioavailability through the generation
of superoxide[46,47], because NO also has anti-inflamma-
tory effect. Hcy-induced oxidative stress will lead to fur-
ther damage of endothelial cell function[48].
7.3  Hypomethylation
Hcy levels are regulated by folate bioavailability and also by
the methyl donor S-adenosyl methionine (SAM) and its
metabolite S-adenosyl homocysteine (SAH). Transmethy-
lation reactions mediated by S-adenosyl-L-methionine are
required for the chemotaxis of mononuclear leukocytes.
Some researchers reported that SAH-induced inhibition of
transmethylation could inhibit chemotaxis of macrophages
in vitro[49-52]. Heterozygous cystathionine β-synthase-defi-
cient (CBS+/-) and wild type (CBS+/+) mice were fed a folate-
replete, methionine-enriched diet. Plasma levels of total Hcy
were elevated in CBS+/- mice compared with that in CBS+/+

mice, relaxation of aortic rings to acetylcholine was selec-

tively impaired by 35%. Plasma levels of SAH were ele-
vated 2-fold in liver and brain of CBS+/- mice[53].
7.4  Endoplasmic reticulum (ER) stress
The ER is one of the important organelles, and it serves
several important functions, including post-translational
modification, folding and assembly of newly synthesized
secretory proteins, and a cellular calcium store. Various
conditions can disturb ER functions, including inhibition
of protein glycosylation, reduction of formation of disul-
fide bonds, calcium depletion from the ER lumen, impair-
ment of protein transport from the ER to the Golgi and
expression of malfolded proteins. Such ER dysfunction
causes proteotoxicity in the ER, collectively termed “ER
stress”[54].

In cultured endothelial cells, smooth muscle cells and
mesangial cells, Hcy can upregulate GRP78, GRP94 and
protein disulfide isomerase (PDI) expression via activating
PKR-like ER kinase (PERK) and IRE21 expression, sug-
gesting that misfolded proteins would accumulate in the
ER because of redox potential changes caused by Hcy[55-57].
Moreover, Hcy-induced ROS production and reducing NO
bioavailability can lead to ER stress[58]. Hcy-induced ER
stress may also promote cyclic-AMP-responsive-element-
binding protein H (CREBH) cleaved upon ER stress and
result in activating expression of acute phase response
(APR) genes, and then promote inflammatory response[59].

8  Anti-inflammatory therapy in HHcy-induced
atherosclerosis

Atherosclerosis is a kind of chronic inflammatory disease.
Hcy could induce atherosclerosis via regulating immuno-
regulatory process. Therefore, anti-inflammatory therapy
might offer some effects on Hcy-induced atherosclerosis.
In vivo studies showed that antibodies recognizing MCP-1,
VCAM-1, or E-selectin can abolish the enhanced mono-
cyte binding to the aortic endothelium of HHcy rats[10].
Folic acid is a well-known reagent that can decrease Hcy
level. Low-dose of folic acid administration which reduces
the plasma Hcy levels increases NO-mediated endothelium-
dependent vasomotor responses, reduces vascular super-
oxide production, and improves enzymatic coupling of en-
dothelial NO synthase through availability of the cofactor
tetrahydrobiopterinas as well as improves vascular func-
tion through abolishing inhibition of endothelial NO syn-
thase and vascular oxidative stress comparable to daily in-
take and dietary fortification[60].

Recently, it has been shown that a nuclear factor peroxisome
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proliferator-activated receptor (PPAR) can reduce inflam-
mation by inducing IκB binding to NF-κB. PPAR-γ activa-
tor prevents Hcy-induced MCP-1, IL-8 and IL-6 produc-
tion in monocytes[22,61]. Hcy competes with activator of
PPAR-α and PPAR-γ for binding PPAR-α and PPAR-γ,
respectively, indicating a role of PPAR in amelioration of
Hcy-mediated endothelial cell dysfunction[62]. MMP-9 was
specifically induced in CBS-/+ mice and inhibited by PPAR-
α activator treatment[63]. Mondal et al.[64] reported that de-
velopment of intimal hyperplasia was 4-fold higher in HHcy
rats; this augmentation was significantly reduced in
rosiglitazone-treated animals (rosiglitazone is a kind of
widely used PPAR-γ activator). The PPAR-γ activator
rosiglitazone can attenuate Hcy-stimulated increase in the
rate of development of intimal hyperplasia indirectly by
increasing the rate of catabolism of Hcy by CBS and
directly by inhibiting vascular smooth muscle cell
proliferation. In addition, erythromycin can decrease Hcy-
induced extracellular MMP-2 production in cultured rat
vascular smooth muscle cells[65]. These results also indi-
cate that anti-inflammatory therapy has some effects in
Hcy-induced cardiovascular diseases.

9  Summary

Inflammation and immunity are two important effects in
Hcy-induced atherosclerosis, especially in the early stage.
Hcy could induce inflammatory response in different cell
types through many kinds of mechanisms. Sharma et al.[66]

traced many references and studied Hcy-related genes. The
comprehensive network collated has led to the identifica-
tion of genes that are modulated by Hcy indicating that
Hcy exerts its effect not only through modulating the sub-
strate levels for various catalytic processes but also through
regulation of expression of genes involved in complex
diseases. But the exact intracellular signal transduction
mechanism is still not fully understood. Therefore, to study
HHcy and its related diseases via its immunoregulatory ef-
fects could provide an insight into new findings.
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