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Role of glutamate receptors in the spiral ganglion neuron damage induced by
acoustic noise
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Abstract: The aim of the present study was to investigate the role of glutamate receptors in the damage of spiral ganglion neurons (SGNs)
induced by acute acoustic noise. This investigation included in vivo and in vitro studies. In vivo, kynurenic acid (KYNA), a broad-spectrum
antagonist of glutamate receptors, was applied to the round window of guinea pigs, and its protective effect was observed. The animals
were divided into three groups: control (saline, 0.9%, 10 uL), saline (0.9%, 10 uL) + noise and KYNA (5 mmol/L, 10 uL) + noise. Saline
and KYYNA were applied to the round window membrane with a microsyringe. The animals were exposed to 110 dB SPL of white noise
for 1 h. Hearing thresholds for auditory brainstem responses (ABRs) and compound action potentials (CAPs) in all animals were
measured before and after treatment. The amplitudes of 11l waveform of ABR and N1 waveform of CAP and the latency of N1
waveform at different stimulation levels (intensity-amplitude and intensity-latency functions) were also measured. The cochleas were
then dissected for transmission electron microscopy (TEM) after final electrophysiological measurement. In vitro, the SGNs of the
normal guinea pigs were isolated and glutamate (100 pmol/L or 1 000 umol/L) was added into the medium. The morphology of the SGNs
was examined by light microscopy. In vivo results showed that the hearing function and morphology of the inner ear including hair cells
and SGNs in the control group were normal. Compared with that in the control group the thresholds for ABR and CAP (click and tone
burst) in saline + noise group were elevated significantly. The input-output functions showed that the amplitudes of 11l waveform of
ABR and N1 waveform of CAP decreased and the latency of N1 waveform increased obviously. There was significant difference in the
amplitude and latency between saline + noise group and KYNA + noise group (P<0.05). TEM indicated obvious swelling and vacuoles
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at the terminate of dendrites of SGNs in NS + noise group. On the contrary, the afferent dendrites in KYNA + noise group showed normal
appearance without swelling and vacuoles. In vitro experiment showed that the isolated SGNs of guinea pigs obviously swelled and even
died after application of 100 umol/L or 1 000 pmol/L glutamate. These results suggest that noise exposure causes hearing impairment,
damage of hair cells and hair cell/afferent synapse and death of SGNs. The antagonist of glutamate receptors provides protective effects
against hearing loss and SGN damage. It is inferred that excessive release of glutamate from the inner hair cells induced by noise may be
responsible for these damages. Glutamate receptors are involved in the degeneration and death of SGNs.
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Fig. 1. Effect of KYNA on noise-induced threshold shifts of the
auditory brainstem response (A) and compound action potential
(B). “P<0.05 vs NS group and KYNA + noise group.
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Fig. 2. Effect of KYNA on noise-induced amplitudes of the au-
ditory brainstem response (A) and compound action potential (B).
"P<0.05 vs KYNA + noise group.
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4. /
Fig. 4. Transmission electron microscopy pictures of one outer hair cell and the hair cell/afferent synapse in the saline group. A: The
outer hair cell displayed normal appearance and structure. Scale bar, 5 um. B: The hair cell/afferent synapse showed normal structure
without swelling and intracellular vacuoles. Scale bar, 2.5 um.

5. NS+ /
Fig. 5. Transmission electron microscopy pictures of the outer hair cell and the hair cell/afferent synapse in NS + noise group. A: The
outer hair cell showed swelling with small vacuoles beneath the membrane (arrows). Scale bar, 2.5 um. B: A large vacuole appeared in
the cytoplasm of one outer hair cell. Scale bar, 2 um. C: Some relative large vacuoles in the afferent dendrites. Scale bar, 2.5 um. D: The
afferent dendrites had a severe swelling appearance. Scale bar, 2.5 um. E: The mitochondria in the afferent dendrites showed edema with
vacuoles inside. Scale bar, 0.5 um.
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6. KYNA + /
Fig. 6. Transmission electron microscopy pictures of the outer hair cells and the hair cell/afferent synapse in KYNA + noise group. A,
B: The outer hair cells displayed normal appearance without swelling and vacuoles inside. The hair cell/afferent synapse showed normal
structure. Scale bar, 5 um and 2.5 pum, respectively. C: There was no swelling and vacuoles in the dendrites and the mitochondria had
normal structure. Scale bar, 0.4 pum.

7.
Fig.7. The toxic effect of glutamate on the isolated spiral ganglion neurons of guinea pigs. A: The isolated spiral ganglion neurons in the
normal medium showed normal appearance. Scale bar, 25 um. B: Spiral ganglion neurons showed swelling and vacuoles 1 h after application
of glutamate in the medium. Scale bar, 25 um. C: Degeneration and death of spiral ganglion neurons after application of glutamate. Scale
bar, 25 pm.
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