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Effect of 1P, on BK channels of porcine coronary artery smooth muscle cells
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Abstract: D-myo-inositol 1,4,5-trisphosphate (IP.) plays an important role in signal transduction. It releases Ca® from intracellular
sites, which activates the Ca> -dependent channels such as large-conductance Ca**-activated potassium channels (BK channels). The
present study was therefore designed to determine if the activity of BK channels in porcine coronary artery smooth muscle cells was
increased by IP,. Using the inside-out patch-clamp technique, the activity of single BK channels was recorded in porcine coronary artery
smooth muscle cells. In excised inside-out membrane patches, IP,(10~50 pmol/L) enhanced the open probability (Po) of BK channels
in a dose-dependent manner in the intracellular side of inside-out patches and its effect was almost completely abolished by washout.
The open-state probability of the BK channels increased from a control level of 0.0402 2= 0.0152 to 0.1365 == 0.0212 (20 pmol/L IP,
) and 0.186520.0175 (30 pmol/L IP,). IP, decreased the mean close time markedly, but had no effect on the amplitude of BK channels.
The activation of IP, on BK channels did not decline. The metabolite of 1P, had no obvious effect on BK channels. This study provides
evidence that IP,activates BK channels in porcine coronary artery smooth muscle cellsin a dose-dependence manner.

Key words: large-conductance calcium-activated potassium channels; inositol 1,4,5-trisphosphate; coronary artery; smooth muscle
cells; patch-clamp techniques
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Fig. 1. Conductance and voltage dependence of BK channels on porcine coronary artery smooth muscle cells. A: Representative single
channel current traces showing voltage dependence of BK channels in an inside-out patch. Po increased along with the increase of membrane
potential. Pipette: 140 mmol/L K*, 1 mmol/L [Ca?"]. Bath: 140 mmol/L K*, 1x10”mol/L [Ca®*]. B: Current-voltage relationship curve.
Value of the single channel conductance is (240.53 +7.98) pS. Line was fitted by line-regression equation with SigmaPlot 9.0 software.
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2. BK
Fig. 2. K*selectivity of BK channels. [Ca®*];.. = 5> 10 ‘mol/L. Data comes from three cells, and pipette/bath K* gradients are indicated
above. The calculated K* equilibrium potentials for K* gradients ( K,/ K;) were 0 mV for 140/140 mmol/L K*, 32.6 mV for 140/40 mmol/L
K*, —82 mV for 6/140 mmol/L K*, respectively . The measure currents in these gradients reverse near theoretical values. Line was fitted
by Goldman-Hodgkin-Katz equation for K*: 1=(P,*F?V_/RT) ( K" ;*exp(VF/RT)- K' )/exp(VF/RT)-1) with SigmaPlot
9.0 software, where P, is the apparent permeability for K*, V,, is the membrane potential, F/RT=38.3 .
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Fig. 3. Effect of [Ca?], on BK channels. The Po of BK channels

enhanced along with the increase of [Ca*'];. [K*],:[ K*];=140:140
mmol/L. V, =+40 mV .
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Fig. 4. Effect of IP, on BK channels in an inside-out patch at +40
mV in symmetric high K" solution. IP,(10~50 umol/L) in the bath

BK solution enhanced the open probability (Po) of BK channels in a
dose-dependent manner and had no effect on the amplitude of BK
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Fig. 5. Histogram of Po of the BK channels. It showed the different concentrations of IP; increased Po of the BK channels in an inside-
out patch. The open events enhanced along with the increase of [IP;] .
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Fig. 6. All-point histogram of current amplitude with the same patch, fitted with Gaussian equation. A: 0 umol/L IP;group. B: 20 umol/L IP,
group. C: 30 umol/L IP, group. IP;had no effect on the amplitude of BK channels, but the open events were enhanced and the close events

decreased in B and C.
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1.IP,, BK
Table 1. Effect of IP,on BK channels (V,=+40 mV, n=11)
IP, (umol/L) Po Amp (pA) To (ms) Tc (ms)
0 0.0402 +0.0152 10.89+0.65 10.34+6.50 285.834+199.01
20 0.1365=+0.0212" 11.214+0.80 10.83+£5.42 89.90 + 52.07"
30 0.1865 +0.0175™ 11.154+0.99 10.64+6.34 56.97 +40.25"

Mean==SD. The patch number of each group was 10. "P<0.01 vs the 0 umol/L IP, group, “"P<0.01 vs the 20 umol/L IP,group. Po, open
probability; Amp, amplitude of the current; To, open time; Tc, close time.
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