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Brief Review

Hyperhomocysteinemia and atherosclerosis

YANG Fan, TAN Hong-Mei, WANG Hong’
Departments of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA

Abstract: Arteriosclerosis and its complications, such as heart attack and stroke, are the major causes of death in developed countries.
It was believed that age, hyperlipidemia, hypertension, diabetes and smoking are common risk factors for cardiovascular disease. In
addition, overwhelming clinical and epidemiological studies have identified homocysteine (Hey) as a significant and independent risk
factor for cardiovascular disease. In healthy individuals, plasma Hcy is between 5 and 10 pmol/L. One cause of severe hypehomocys-
teinemia (HHcy) is the deficiency of cystathionine B-synthase (CBS) , which converts Hey to cystathionine. CBS homozygous
deficiency results in severe HHey with Hey levels up to 100 to 500 pumol/L. Patients with severe HHcy usually present with
neurological abnormalities, premature arteriosclerosis. It has been reported that lowering plasma Hcy improved endothelial dysfunc-
tion and reduced incidence of major adverse events after percutaneous coronary intervention. The mechanisms by which Hey induces
atherosclerosis are largely unknown. Several biological mechanisms have been proposed to explain cardiovascular pathological changes
associated with HHcy. These include: (1) endothelial cell damage and impaired endothelial function; (2) dysregulation of cholesterol and
triglyceride biosynthesis; (3) stimulation of vascular smooth muscle cell proliferation; (4) thrombosis activation and (5) activation of
monocytes. Four major biochemical mechanisms have been proposed to explain the vascular pathology of Hey. These include:
(1) autooxidation through the production of reactive oxygen species; (2) hypomethylation by forming SAH, a potent inhibitor of
biological transmethylations; (3) nitrosylation by binding to nitric oxide or (4) protein homocysteinylation by incorporating into
protein. In summary, our studies, as well as data from other laboratories support the concept that Hey is causally linked to
atherosclerosis, and is not merely associated with the disease. Although folic acid, vitamin B12 and B6 can lower plasma Hcy levels,
the long-term effects on cardiovascular disease risk are still unknown and judgments about therapeutic benefits await the findings of

ongoing clinical trials.
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Abbreviation: ACAT, acyl CoA:cholesterol acyltransferase; Ade, adenosine; apoE, apolipoprotein E; CBS, cystathionine 3-synthase; CE,
cholesterol ester; CEH, cholesterol ester hydrolase; DMG, dimethyglycine; FC, free cholesterol; HDL, high density lipoprotein; HHcy,
hyperhomocysteinemia; HHcye, hyperhomocysteinemic; LDL, low density lipoprotein; MeTHF, methylenetetrahydrofolate; MS, methionine
synthase; MTHFR, methylenetetrahydrofolate reductase; NEFA, non-esterified fatty acid; SAM, S-adenosylmethionine; SAH, S-
adenosylhomocysteine; SR, scavenger receptors; THF, tetrahydrofolate; TG, triglyceride; TC, total cholesterol; TGS, triglyceride synthase;

TLC, thin layer chromatography;

Despite considerable advances in our understanding of the
etiology of arteriosclerosis, the established risk factors do
not fully explain its occurrence: about 30% cardiovascular
disease cannot be explained by conventional risk fac-
tors!'. Although overwhelming clinical and epidemiologi-
cal studies have identified homocysteine (Hcy) as a signifi-
cant and independent risk factor for cardiovascular dis-
easel¥, the mechanisms by which Hey induces athero-
sclerosis are largely unknown. We have previously sug-
gested that Hey promotes atherosclerosis by stimulating
vascular smooth muscle cell proliferation and inhibiting
endothelial cell growth”, and have recently reported that
hyperhomocysteinemia (HHcy) accelerates atherosclero-
sis in a mouse hyperhomocysteinemic (HHcyc) model with
and without dietary manipulation ®), Our studies, together
with studies discussed in this review, support the hypoth-
esis that Hey is a causative factor for atherosclerosis.

Hcy metabolism and HHcy

Hcy is a highly reactive sulthydryl-containing amino acid
and an intermediate in methionine metabolism (Fig.1).
Methionine forms S-adenosylmethionine (SAM), a major
donor of cellular methylation. SAM, which converts to
S-adenosylhomocysteine (SAH) by donating a methyl group
for cellular methylation, is then converted to Hey. Further
metabolism of Hcy occurs through two pathways to re-
duce total Hcy concentrations in the cells and blood; trans-
sulfuration to cysteine, catalyzed by vitamin B6 dependent
cystathionine f—synthase (CBS), and remethylation to
methionine by receiving a methyl group from betaine or
methylenetetrahydrofolate (MeTHF), catalyzed by methion-

ine synthase (MS) or methylenetetrahydrofolate reductase
(MTHFR). Vitamin B12 and folic acid serve as important
co-enzymes for remethylation. Multiple factors interacting
with Hey metabolism determine its plasma concentration.
These include genetic abnormalities, nutritional defects, renal
impairment, age and gender, all of which play a role in
accelerated cardiovascular disease. Genetic defects in the
enzymes (CBS, MS or MTHFR) and dietary defect of the
cofactors (folic acid, vitamins B6 and B12) involved in
trans-sulfuration and remethylation pathways would im-
pair Hcy clearance and increase plasma Hcy levels.

HHcy and cardiovascular disease

In healthy individuals, plasma Hcy is between 5 and 10
pumol/L. The earliest case of severe HHcy was reported 40
years ago"). One cause of severe HHcy is a deficiency of
CBS, which converts Hcy to cystathionine (Fig.1)'”. CBS
homozygous deficiency results in severe HHcy with Hey
levels up to 100 to 500 pmol/L. These are rare disorders
with a frequency of 1 out of 75 000 in the general population.
Patients with severe HHcy who usually present with neu-
rological abnormalities, premature arteriosclerosis, develop
cerebral thrombosis or myocardial infarction around 30
years old. In 1969, Dr McCully first suggested that el-
evated Hcy levels are responsible for widespread vascular
lesions in HHcyc infants, and that moderate HHcy may be
a potential cause for cardiovascular disease!'"!. This hy-
pothesis was overlooked for many years, until the later
recognition of Hcy as an independent risk factor for myo-
cardial infarction and stroke in general population by re-
ports of prospective studies™*. It is now recognized that
HHcy is a common risk factor for cardiovascular disease,
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Fig. 1. Pathways of Hcy metabolism (SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; Ade, adenosine; THF, tetrahydrofolate;
MeTHF, methylenetetrahydrofolate; CBS, cystathionine-f-synthase; DMG, dimethyglycine; MS, methionine synthase; MTHFR,

methylenetetrahydrofolate reductase).

similar to those for smoking and hyperlipidemial'®, despite
controversy about whether moderate HHcy is a causative
agent or only a marker of cardiovascular disease.

Hcy lowering and cardiovascular disease

Severe and moderate HHcy can be treated with vitamins
supplements of folate, B6, and B12['*'¥, Folate
supplementations, in daily doses of at least 0.4 mg, have
been shown to reduce plasma Hcy levels even in healthy
individuals!'>'¥. The addition of vitamins B12 and/or B6, to
folic acid supplementation may provide a small further re-
duction in Hey levels in certain groups of patients. Renal
impairment is an important cause of HHcy, and individuals
with HHcy secondary to renal disease commonly require
significantly higher doses of folic acid (5~40 mg) to achieve
maximal therapeutic effect!'”). Importantly, it has been re-
ported that lowering plasma Hcy improved endothelial
dysfunction, a marker of atherothrombotic risk "%,
Recently, short-term Hcy-lowering therapy (12 months)
has suggested some clinical benefit of reduced incidence
of major adverse events after percutaneous coronary in-
tervention®, However, the long-term effects of reduced
plasma Hcy levels on cardiovascular disease risk are still
unknown and judgments about therapeutic benefits await
the findings of ongoing clinical trials.

Biological mechanisms of Hey pathology

A large body of in vitro studies has demonstrated signifi-
cant biological effects caused by Hcy. Several biological
mechanisms have been proposed to explain cardiovascu-
lar pathological changes associated with HHcy. These in-
clude endothelial cell damage!”, impaired endothelial func-
tion 2"-221, dysregulation of cholesterol and triglyceride (TG)
biosynthesis®*, thrombosis activation, stimulation of vas-
cular smooth muscle cell (VSMC) proliferation® ?), and ac-

tivation of monocytes®. Because VSMC proliferation is one
of the hallmarks of atherosclerosis, early studies of Hcy
vascular biology focused on VSMC. We were the first to
report a significant growth-promoting effect of Hcy on
human and rat aortic smooth muscle cells®*!. We have
also shown that Hey increased cyclin A gene expression
and activated cyclin A promote through the ATF/cyclic AMP-
responsive element-binding site. Several studies from other
laboratories supported these findings and confirmed the
mitogenic effects of Hcy on VSMC?), In addition, Hey
activates the protein kinase C pathway, increases c-myc
and c-myb expression®”, increases collagen synthesis®®!
and inhibits lysyl oxidase, a key enzyme in elastin and col-
lagen crosslinking®"! in VSMC. Thus, it is generally agreed
that Hcy, at high concentrations, promotes atherosclerosis,
at least, in part, by stimulate VSMC proliferation.

Proposed biochemical mechanisms

Although multiple mechanistic studies have demonstrated
significant biological effects and important molecular events
caused by Hcy, the biochemical mechanisms by which
HHcy promotes arteriosclerosis remain largely unknown.
Four major biochemical mechanisms have been proposed
to explain the vascular pathology of Hcy. These include
(1) autooxidation through the production of reactive oxy-
gen species P2, (2) hypomethylation by forming SAH, a
potent inhibitor of biological transmethylations (Fig.1)%,
(3) nitrosylation by binding to nitric oxide, or (4) protein
homocysteinylation by incorporating into protein 4,

Hcy autooxidation mechanisms

Oxidation has been proposed as a primary biochemical
mechanism responsible for Hey pathogenesis®!. Hey con-
tains a free sulthydryl group (SH), which dominates the
redox property. Hey can be autooxidized with another Hey
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molecule, and generate the disulfide and reactive oxygen
species (Fig.2). In a biological system, Hcy can form a
mixed disulfide with other free sulthydryl amino acid or
sulfhydryl containing proteins via similar oxidation
mechanism, thereby generating reactive oxygen species.
During Hey oxidation, the liberated reactive oxygen spe-
cies could initiate lipid peroxidation in circulating lipopro-
teins and in the cell membranes, a process that could lead
to impaired endothelial function. In addition, Hcy-medi-
ated oxidation of low-density lipoprotein (LDL) could form
lipid derivatives that trigger platelet activation, releasing
growth factors that cause smooth muscle cell proliferation
and vascular hypertrophy.

Autooxidation

2Hcy-SH+30,+H,0——— Hcy-S-S-Hey+H,0,+30  +20H
Oxidative injury
Fig. 2. Homocysteine autooxidation. Hcy-SH, free Hcy; Hey-S-S-

Hcy, homocystine (disulfide); O,, oxygen; H,O, water; H,0,, hy-
drogen peroxide; O, singlet oxygen; OH', hydroxyl radical.

Hcy hypomethylation mechanisms

Paradoxically, most of the reported biological effects of
Hcy in vascular cells were observed at Hey concentrations
about 100-fold higher than those found in human HHcy.
The putative pro-oxidative effects of autooxidation of its
free sulthydryl group can be mimicked by cysteine, a non-
pathogenic biothiol. We have proposed that hypomethylation
is a specific biochemical mechanism by which Hcey in-
duces vascular injury that leads to cardiovascular disease P2,
Through the adenosylation pathway, Hcy can utilize
adenosine, a normal constituent of all body fluids, to form
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Fig. 3. Hcy hypomethylation (SAM, S-adenosylmethionine; SAH,
S-adenosylhomocysteine; Ade, adenosine).

SAH, a potent inhibitor of cellular methylation, thereby caus-
ing cellular hypomethylation (Fig.3). Notably, this path-
way is not shared by cysteine. The formation of SAH de-
pends on Hey availability and is not affected by adenosine
accumulation®),

We tested this hypothesis on cultured vascular cells, and
found that clinically relevant concentrations (20~50 pmol/
L) of Hey and homocystine (the disulfide), in the presence
of adenosine, dramatically inhibited [*H]thymidine
incorporation, an indicator of DNA synthesis, and cell pro-
liferation in a dose-dependent manner in endothelial cells
from different species (Fig.4). This inhibitory effect ap-
pears to be specific to endothelial cells; Hey did not inhibit
DNA synthesis in aortic smooth muscle cells or fibroblasts.
Interestingly, this is a free sulfthydryl group-independent
effect, because homocystine, which lacks the free sulthy-
dryl group, had a similar inhibitory effect on endothelial
cell growth. Importantly, this is not mimicked by cysteine
or cysteine (the disulfide)!”. Therefore, we have identified
a Hcy unique, cell type specific, growth inhibitory effect
at clinically relevant concentrations in endothelial cells.
Because damage to endothelial cells is a key feature of
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Fig. 4. Effect of Hcy on DNA synthesis in endothelial cells. Human umbilical vein endothelial cell (HUVEC), human aortic endothelial cells
(HAEC), porcine aortic endothelial cells (PAEC) and human aortic smooth muscle cells (HASMC) were incubated with control medium

containing 50 umol/L adenosine and 10 pmol/L EHNA (an adenosine deaminase inhibitor, added to stabilize adenosine) in the absence (control,
open circles) or presence (open triangles) of L-Cys, DL-Hcy (filled circles), L-homocystine (filled triangles), at the indicated concentrations.
Cells at (70~80)% confluence were treated with described chemicals for 24 h and metabolically labeled with 37 kBq/ml [*H]thymidine for the
last 3 h. [*H]-thymidine incorporation was measured in a liquid scintillation counter. Values represent mean + SD from three independent
experiments from 3 wells (n = 9). These results were published in J Biol Chem 1997; 272: 25380-25385.
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arteriosclerosis, the growth inhibition of endothelial cells
may represent an important mechanism for Hey-induced
arteriosclerosis.

Because the ratio of SAH to SAM represents a measure
of cellular methylation status, we determined the SAH/SAM
ratio in vascular cells by metabolically labeling with ["“C]
adenosine and analyzing its metabolites by two-dimensional
thin layer chromatography (2D-TLC) (Fig.5). Hcy, but
not cysteine markedly increased the level of SAH in human
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aortic endothelial cells and increased the SAH/SAM ratio
by 6- to 8-fold. It had little effect on the ratio in human
aortic smooth muscle cells. These results suggest that Hey-
induced increases in the SAH/SAM ratio (and subsequent
cellular hypomethylation) may mediate inhibition of endot-
helial cell growth by Hcy. Also, the differential effect of
Hcy, at physiologically relevant concentrations on endot-
helial cell and VSMC growth may be explained by its abil-
ity to dramatically increase the SAH/SAM ratio in endothe-
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Fig. 5. Increase in SAH content in endothelial cells by Hcy. Human aortic endothelial cells (HAEC) and human aortic smooth muscle cells
(HASMC) were cultured as in Fig. 4 and exposed to 50 pmol/L DL-Hcy or L-Cys in six-well plates and metabolically labeled with ['*C]
adenosine for 5 h. Adenosine metabolites were analyzed by two-dimensional chromatography. Standard compounds (inset, SAH, SAM, ADP,
AMP, and ATP) were applied on the plate and localized under UV light. These results were published in J Biol chem 272: 1997; 25380-25385.

lial cells but not in VSMC.

In addition, we have also found that Hcy decreases car-
boxyl methylation of Ras, and arrests endothelial cell growth
at the G,/S transition of the cell cyclet”. It is likely that the
accumulation of SAH inhibits cellular methylation, leading
to endothelial cell growth inhibition. Recently, we found
that Hey dramatically decreases cyclin A transcription and
that adenovirus-transduced cyclin A expression rescued
endothelial cell growth from Hcy treatment!,

This work is corroborated by reports that elevated Hcy
levels in patients are linked to increase SAH and impaired
erythrocyte membrane protein methylation 9. In addition,
CBS knock out mice have increased SAH levels and de-
creased DNA methylation®” %, Collectively, these studies
suggest that Hey-induced inhibition of endothelial cell
growth may play an important role in the pathogenesis of
arteriosclerosis and thrombosis by preventing repair of aged
or injured cells, and that impaired methylation due to in-
creased levels of SAH might be a key mechanism in Hey-
dependent atherosclerosis.

Dietary-induced HHcyc animal models

Given that most of the Hcy studies have focused on the
effects of Hcy on cellular and vascular function, it is of
great importance to evaluate the direct role of Hey in car-

diovascular pathogenesis in animal models. Several dietary
animal models of HHcy have been used to study Hcy-me-
diated vascular pathogenesis. Diet-induced HHcy is asso-
ciated with vascular dysfunction in the monkey probably
due to the inhibition of nitric oxide synthesis®*”), linked with
vascular elastic structural damage in the minipigh”, corre-
lated with increased post-injury intimal hyperplasia*! and
leukocyte-endothelium interaction* in the rat, and vascu-
lar dysfunction® and increased intimal hyperplasia*! in
mice.

CBS-deficient mice

A genetic HHcy model with the gene deletion of CBS, which
catalyzes Hcy conversion to cystathionine, has been used
recently in studies of Hey pathology (Fig.1). The CBS-
deficient mice resemble human HHcyc patients; those that
are homozygous for CBS deficiency have plasma Hcy lev-
els of about fifty-times normal; while heterozygotes have
plasma Hcey levels approximately two-times normal®,
Homozygous CBS-deficient mice (CBS™) have a short life
span and develop hepatic steatosis. Heterozygous CBS-
deficient mice (CBS™) have endothelial dysfunction prob-
ably due to nitric oxide inactivation resulting from increased
production of reactive oxygen species following the inhi-
bition of glutathione peroxidase, an antioxidant enzyme!*!.
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This effect has been associated with SAM dependent me-
thylation inhibition®***”. CBS”* mice have increased he-
patic cholesterol and TG levels through increasing hepatic
expression of genes involved in cholesterol and TG syn-
thesis by activating sterol regulatory element-binding pro-
teins if fed a HHeyc diet®!. However, atherosclerotic le-
sions have not been observed in CBS knockout mice.
Therefore, it is necessary to test the Hey theory of athero-
sclerosis in animals that develop spontaneous atheroscle-
rosis to determine whether HHcy is harmful under athero-
genic conditions.

ApoE deficient mice

Several genetic models of atherosclerosis in mouse have
been established and characterized®®. Mice with a targeted
disruption in the gene of apolipoprotein E (apoE), which
mediates the removal of plasma lipoproteins through its
interaction with LDL receptors and other receptors, are
severely hypercholesterolemic and develop spontaneous aor-
tic atherosclerotic lesions™®**. The homozygous (apoE™)
mouse is the most frequently used genetic atherosclerosis
animal model. These mice develop advanced lesions at a
young age if fed an atherogenic diet. Recently, diet-induced
HHcy in apoE"" has revealed accelerated atherosclerosis *!
and enhanced vascular inflammation™. However, dietary
manipulations elicit broad physiological changes that can
confound data interpretation. Therefore, an animal model
of HHcy, which is isolated from broad dietary effects,
would be useful in better defining mechanistic relationship
between HHcy and atherogenesis.

CBS/apoE double knockout mice

Recently, we have created double knockout mice with tar-
geted deletions of the apoE and CBS genes by breeding
CBS”* females with apoE" males. The general health and
body weight of CBS**/apoE"and CBS*/apoE" were not
different compared to normal mice. CBS"/apoE”" had a
high incidence of death during the first 3 postnatal weeks,
which is similar as the CBS™. About 5% of CBS/apoE™"
survived to 15 weeks of age, about 2% to 6 months. This
animal serves as a faithful model of human hypercholes-
terolemia and HHcy, and is susceptible to atherosclerosis.
We used this model to determine the effect of Hey on
atherosclerosis and lipid metabolism in animals fed a regu-
lar diet, an atherogenic high-fat diet, or an atherogenic high-
fat plus HHcyc high-methionine diet.

CBS/apoE double knockout mice are HHcyc and hy-
percholesterolemic
CBS gene deficiency, on an apoE knockout background,
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produced a two-fold increase in plasma Hcey levels in CBS
heterozygote mice (CBS"/apoE”") compared to CBS wild
type animals (CBS**/apoE™"). Severe HHcy was found in
CBS homozygotes (CBS”/apoE™) (Table 1). The ratios of
plasma Hcy levels were 1:2: 54 (CBS**/apoE": CBS™*/
apoE”: CBS"/apoE"), which is greater than those observed
in CBS single knockout mice (1:2:40) ¥, The double
knockout mice had significantly increased plasma total cho-
lesterol (TC) levels, which were similar to those in apoE
single knockout mice®”. HHcy caused by CBS gene dele-
tion did not change the levels of plasma non-esterified fatty
acid (NEFA), but was associated with significantly in-
creased plasma TC levels and decreased plasma TG levels
in the absence of dietary manipulation.

Notably, a high fat diet not only elevated NEFA and TC
concentrations, but also doubled Hcy levels in both CBS™*
and CBS”* mice. However, this may be related, in part, to
the higher content of methionine and lower content of cho-
line in the high fat diet. A prior study using a high methion-
ine plus low folate diet in CBS”* mice found a 15-fold
increase (from 6.2 to 92.8 mmol/L) in Hcy levelsP?,
whereas we observed a 21-fold increase (from 7.4 to 154.9
umol/L) in Hey levels in CBS”*/apoE" mice fed a high me-
thionine plus high fat diet compared to mice on a control
diet, and an 11-fold increase (from 14.2 to 154.9 ummol/L)
compared to mice on only a high fat diet (Table 1). These
data suggest that the high intake of dietary cholesterol and
fat, might contribute to the increase of Hcy levels as well.
Thus, the combination of HHcy and hyperlipidemia may
increase the occurrence of atherosclerosis. The combina-
tion of high fat plus high methionine diet in CBS"* mice is
an easily produced model of severe HHcy, which will per-
mit large-scale in vivo functional assessments that were
not possible with the CBS™ mice. Our finding is partially
consistent with the report of Austin®! showing that Hcy
increases cholesterol and TG content of HepG2 cells and
that diet-induced HHcy increases the accumulation and
synthesis of hepatic cholesterol and TG in mice.

HHcy accelerates aortic lesion in CBS/apoE double
knockout mice

At 15 weeks, atherosclerotic lesions were apparent in apoE™
mice at the branch points of the aortic arch and at all the
ostia of the intercostal arteries (Fig.64). HHcyc apoE" mice
had slightly larger lesion areas in the aortic arch but this
was not statistically significant at this time point (Fig. 6A4).
At 6 months of age, lesions were enhanced in the aortic
arch and significantly increased with CBS gene deletion in
a dose-dependent manner. At one year of age, advanced
lesions were observed in all apoE"~ mice in the aortic arch;
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Table 1. Plasma levels of Hcy, NEFA, TC and TG

Genotype n Hcy (umol/L) NEFA (mEq/1) TC (mg/dl) TG (mg/dl)

Regular diet

CBS""/ApoE™ 14 3.8+09 0.74 +0.42 387 £ 130 128 £ 64

CBS”'/ApoE™" 15 7.4+29 0.73 +0.12 442 =111 145 £ 56

CBS”/ApoE™ 12 210.4 % 80.17P<0-001 0.83 +=0.03 559 & 847F<0.0011p=0.006 72 £ 21"P0009fp<0.001
HF diet

CBS""/ApoE™ 12 5.9 £2.07700% 1.37 £ 0.35770:0% 1271 =% 233"<0001 166 £ 407700%

CBS™/ApoE™ 12 14.2 & 7.87r=001 1.61 & 0.54770:020 1366 + 3037<00 259 + 16670
HF + HM diet

CBS™/ApoE™" 14 154.9 £ 90.7%=0-0! 1.10 +0.27 1545 + 264 162 + 89

Mice were grown under regular diet, or fed a high fat or a high fat+ high methionine diet at 8 weeks of age for 3 months. Values are mean
+ SD, P values from t-test. *, comparison versus CBS™*/ApoE™; t, comparison versus CBS”*/ApoE™"; {, comparison versus CBS”*/
ApoE™ on high fat diet. Hcy, homocysteine; NEFA, non-esterified fatty acid; TC, total cholesterol; TG, triglyceride; HF, high fat; HM,
high methionine. These results were published in Blood 2003; 101:3901-3907.

A Mouse age:
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ApoE genotype: +/+ -/-
CBS genotype: +/+ +/+

B Mouse age: 5 months
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Fig. 6. HHcy increased atherosclerosis lesions. 4, B: Sudan [V staining of atherosclerotic lesions in mouse aortas. Mice were killed at the ages
of indicated. Lesions were examined by Sudan [V staining. Lesions shown up as red plaques. C: Regression analysis of the correlation of lesion
area with plasma concentrations of Hey in mice. Each spot represents one mouse. HF, high fat; HF+HM, high fat plus high methionine. These
results were published in Blood 2003; 101: 3901-3907.
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however, lesions were significantly increased by the coex-
istence of HHcy. Advanced lesions in the aortic arch were
also observed at 5 months of age in CBS”*/apoE” mice
that had been fed with HF or HF+HM diet for 3 months
(Fig. 6B). These lesions were comparable to those of CBS™
/apoE™" at one-year-old of age on regular diet (Fig.64). In
HHcyc mice, the increases of plasma Hcy levels were sig-
nificantly correlated with increases in atherosclerotic le-
sion area in the aortic arch (Fig.6C). These results indicate
that genetically induced mild HHcy enhances atherogen-
esis in old mice, whereas both genetic and dietary severe
HHcy significantly increases lesion formation in young mice.

The increased lesion formation in CBS”/apoE” animals
is associated with elevated TC which is known to be strong
risk factors for cardiovascular disease, suggesting that
HHcy affects hepatic lipid metabolism thereby further in-
creasing cardiovascular disease risk. Plasma TG probably
does not correlate with increased lesion formation because
this remains within the normal range of TG concentrations
in the double knockout mice. In addition, the role of plasma
TG as an independent cardiovascular disease risk factor is
controversial and unresolved. A high fat plus high methionine
diet consistently resulted in severe atherosclerosis and HHcy
in CBS”*/apoE™, thereby confirming the atherogenicity of
Hcy and validating the model for severe HHcy.

Hcy increases the uptake of acetylated-LDL in perito-
neal macrophages

We have demonstrated that both genetic and dietary HHcy
increased aortic lesion formation and neutral lipid (CE and
TG) content in the lesions of apoE* mice in the vessel wall &,
Models for the mechanism of atherogenic lipid accumula-
tion in vascular lesions emphasize increased LDL uptake
by macrophages into the vessel wall. In vitro studies have
established that LDL can be modified by oxidation,
acetylation, glycation, methylation and other conditi-
ons P34, During Hey autooxidation, liberated reactive oxy-
gen species could initiate lipid peroxidation and lead to im-
paired endothelial function and the formation of athero-
genic LDL 5. Although Hey and other thiols induce LDL
peroxidation in vitro®* "\, no difference in the extent of
oxidation of LDL has been found in patients with moderate
and severe HHcy in case-control studies® 1. We specu-
lated that Hey increases lipid accumulates in the lesions of
the double knockout mice via enhanced LDL uptake. To
test this possibility, we incubated mouse macrophages with
['*I]acetylated-LDL or ['**I]native-LDL and then measured
protein-associated ['*]] radioactivity. As shown in Fig. 7,
native-LDL uptake was somewhat decreased in macroph-
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Fig. 7. Effect of hyperhomocysteinemia on LDL uptake. Mouse
peritoneal macrophages were incubated with 20 pwg/ml of ['*I]Ac-
LDL or ["*I]native-LDL for 2 h. Protein-associated ['*I]radioactiv-
ity were measured and normalized as ['*I] counts per mg protein.
The uptake activity of ['**[JAc-LDL in macrophages from CBS™"/
ApoE™" mice under HF diet was set as the control. LDL uptake
activity is expressed as relative cellular ['*I]protein (% of control
mean values). Inset is the image of LDLs on 0.75% agarose gel show-
ing the electrophoretic mobility change by acetylation. Values repre-
sent mean+SD from 3 independent assays (#=9). "P<0.01 versus
CBS"*/ApoE™, TP<0.01 versus CBS”*/ApoE™" in the same group.
HEF, high fat; HF+HM, high fat plus high methionine; Ac-LDL, acety-
lated-LDL. These results were published in Blood 2003; 101: 3901-
3907.

ages from HHcyc mice. In sharp contrast, HHcy resulting
from CBS gene deletion significantly increased acetylated-
LDL uptake. A similar pattern was observed in macroph-
ages from dietary-HHcyc mice. These data indicate that
HHcy increases the uptake of acetyl-LDL by macrophages.

Potential mechanisms of Hcy enhanced acetylated-
LDL uptake

At current stage, it is not clear yet whether the enhanced
uptake of modified-LDL by macrophages contribute to the
increased atherosclerosis lesion in HHey. We do not know
how Hcy enhances modified-LDL uptake by macrophages.
We propose that hypomethylation is a specific biochemical
mechanism by which Hey induces vascular injury®!. Hey
can utilize adenosine to form SAH, a potent inhibitor of
cellular methylation (Fig.3). Elevated Hey levels in patients
are linked to increased SAH and impaired erythrocyte mem-
brane protein methylation®!. CBS-deficient mice have in-
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creased SAH levels and decreased DNA methylation™”. Hcy
arrests endothelial cell growth and increases cellular SAH
in a cell type specific way!”. It is relevant that methylation
of LDL abolished its recognition by LDL receptors®Y, re-
tarded the degradation of aggregated LDL by macroph-
ages®, and decreased CE formation in macrophages'®. It
is possible that HHcy may inhibit lipid or protein methyla-
tion in LDL, which may result in increased endocytosis of
LDL-derived CE in the lesions.

In addition, we considered that enhanced uptake of modi-
fied-LDL may account for the increase in lesion lipid
content. Modified-LDL stimulates the secretion of cytokines
and growth factors from vascular cells, and in contrast to
native-LDL, is avidly taken up by macrophages in a pro-
cess that is mediated by interaction with a family of scav-
enger receptors (SR). Modified-LDL binds to SR (class
A and B). SR-A and SR-B are detected in macrophage-rich
areas within atherosclerotic lesions of apoE knockout micel®,
and in human atherosclerotic lesions®. SR-A is pro-athero-
genic under hyperlipidemic conditions and both apoE and
LDL receptor-deficient mice have reduced atherosclerosis
in the absence of SR-A.

The interaction of SR-A with ligands induces cellular sig-
naling leading to gene transcription and cytokine release.
SR-B1 binds to high density lipoprotein (HDL) with high
affinity®). The expression of SR-B family members (SR-
B1 & CD-36) is inducible. Unlike LDL receptors (LDLR),
macrophage SR is not regulated by the cellular cholesterol
content; hence, macrophage uptake of modified-LDL can
contribute to the cellular accumulation of CE and eventu-
ally to increased atherosclerosis. Whereas uptake of native
LDL by macrophages from HHcyc mice was decreased,
uptake of acetylated-LDL was higher in the HHcy mice
than in control mice. Thus, the enhanced uptake of a
modified LDL by macrophages from the HHcyc mice could
account for the observed increase in lesion severity in these
mice.

Summary

Our studies, as well as data from other laboratories sup-
port the concept that Hcy is causally linked to
atherosclerosis, and is not merely associated with the
disease. Our recent findings on HHcyc atherosclerosis mice
support a model in which HHcy promotes atherosclerosis
by altering hepatic lipid metabolism and increasing the up-
take of modified-LDL in macrophages leading to the accu-
mulation of CE and TG in the vessel wall. Results from
lipid analyses and the LDL uptake assay suggest that HHcy
increases plasma cholesterol and decreases HDL-
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cholesterol. It is important to closely examine cholesterol
and HDL metabolism, and LDL uptake regulation by HHcy
in the HHcyc mice. In addition, mechanistic assessments
should examine the involvement of Hcy-related oxidation
and hypomethylation in altered lipid metabolism in HHcy.
Furthermore, therapeutic approaches using folic acid, vi-
tamin B12 and B6, or other reagents on HHcyc and hyper-
cholesterolemic CBS/apoE double knockout should gener-
ate important quantitative data to evaluate therapeutic benefit.
Considering no clinical data supporting the hypothesis that
lowering plasma Hcy levels is cardio protective, these studies
should yield insights into the mechanistic link between
HHcy and atherosclerosis, and provide ultimate proof of
causality of HHcy in vascular disease. Our studies suggest
that Hey alters hepatic lipid metabolism, and that Hcy-low-
ering therapy may improve hyperlipidemia and therefore
result in cardio protection. Vitamin supplements can be
recommended to HHcy patients who are at the risk of car-
diovascular disease. Future trials with lipoprotein assess-
ment and morbidity/mortality endpoints are needed to prove
the hepatic lipid metabolism cross talk and the causality of
HHcy.
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