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Brief Review

GABAergic neurotransmission in globus pallidus and its involvement in
neurologic disorders

CHEN Lei,  YUNG Wing-Ho*

 Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong,  Hong Kong, China

Abstract: The globus pallidus occupies a critical position in the ‘indirect’ pathway of the basal ganglia and, as such, plays an important
role in the modulation of movement. In recent years, the importance of the globus pallidus in the normal and malfunctioned basal ganglia
is emerging. However, the function and operation of various transmitter systems in this nucleus are largely unknown. GABA is the major
neurotransmitter involved in the globus pallidus. By means of electrophysiological recording, immunohistochemistry and behavioral
studies, new information on the distribution and functions of the GABAergic neurotransmission in the rat globus pallidus has been
generated. Morphological studies revealed the existence of GABAA receptor, including its benzodiazepine binding site, and GABAB

receptor in globus pallidus. At subcellular level, GABAA receptors are located at the postsynaptic sites of symmetric synapses (putative
GABAergic synapses). However, GABAB receptors are located at both pre- and postsynaptic sites of symmetric, as well as asymmetric
synapses (putative excitatory synapses). Consistent with the morphological results, functional studies showed that activation of GABAB

receptors in globus pallidus reduces the release of GABA and glutamate by activating presynaptic auto- and heteroreceptors, and
hyperpolarizes pallidal neurons by activating postsynaptic receptors. In addition to GABAB receptor, activation of GABAA receptor
benzodiazepine binding site and blockade of GABA uptake change the activity of globus pallidus by prolonging the duration of GABA
current. In agreement with the in vitro effect, activation of GABAB receptor, GABAA receptor benzodiazepine binding site and blockade
of GABA uptake cause rotation in behaving animal. Furthermore, the GABA system in the globus pallidus is involved in the etiology of
Parkinson’s disease and regulation of seizures threshold. It has been demonstrated that the abnormal hypoactivity and synchronized
rhythmic discharge of globus pallidus neurons associate with akinesia and resting tremor in parkinsonism. Recent electrophysiological and
behavioral studies indicated that the new anti-epileptic drug, tiagabine, is functional in globus pallidus, which may present more informa-
tion to understand the involvement of globus pallidus in epilepsy.
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Motor control is one of the best-known functions of
the basal ganglia. This fact is revealed by the spectrum
of motor disorders originating from the basal ganglia,
including Parkinson’s disease, Huntington’s disease and
tardive dyskinesia. Within the basal ganglia, the globus
pallidus has long been regarded merely as a relay station
between the striatum and subthalamic nucleus in the so-
called ‘indirect pathway’[1]. However, as the widespread
connections between the globus pallidus and other nu-
clei within and outside the basal ganglia have been
revealed, this nucleus is now believed to be a critical and
strategically placed component that can integrate the
actions of the inhibitory inputs from the striatum and the
excitatory inputs from the subthalamic nucleus, neocor-
tex and thalamus[2-4]. In turn, the globus pallidus con-
trols the activity of the whole basal ganglia[5].

By influencing the output of the basal ganglia, the
globus pallidus plays a significant role in mediating move-
ment in health and in diseased state. It is well known
that the abnormal activity of the globus pallidus is in-
volved in the manifestation of Parkinson’s disease, which
includes decreased activity and increased rhythmic burst
firing[6]. In addition, the globus pallidus has also been
implicated in the control of epileptic seizure[7,8] and drug-
induced tardive dyskinesia [9,10]. GABA is the major neu-
rotransmitter used in the globus pallidus. In order to fully
understand the functions of the globus pallidus in the
basal ganglia, one must have a detailed knowledge of the
GABAergic neurotransmission in the globus pallidus. This
brief review will first describe the nature of this GABA
system, highlighting some of our efforts that combine
morphological, electrophysiological and behavioral
approaches. Then, the contemporary view of the role of
the globus pallidus in some specific neurological disor-
ders and the involvement of the GABA system will be
described. In the course of discussion, some interesting
but still unanswered questions will be mentioned.

GABAergic innervation of globus pallidus neurons
The globus pallidus receives GABAergic innervation

mainly from the striatum and local axon collaterals. In
the squirrel monkey, the local axon collaterals have been

estimated to represent 10% of the terminals in contact
with the perikarya of external globus pallidus neurons[11,

12]. Previous ultrastructural studies indicated that striatal
terminals are located more distally on the dendritic trees,
whereas pallidal terminals form a typical perineuronal
nets covering the soma and proximal dendrites of adja-
cent neurons. Consistent with this anatomical
observations, electrophysiological studies showed that
pallidal stimulation induced inhibitory postsynaptic cur-
rents (IPSCs) not only with a shorter latency, but also a
faster rise time and a different reversal potential com-
pared with those obtained by striatal stimulation, sug-
gesting that the pallidal inputs were evoked in more
proximal regions of the neurons[13]. The effects of GABA
are mediated by two receptor subtypes: GABAA and
GABAB receptors. While the functions of the GABAA

receptors in globus pallidus and other areas have been
recognized for a long time, detailed characterization of
the GABAB systems was enabled only relatively recently,
following the cloning of the GABAB receptor[14]. As a
result, much less had been known about the distribu-
tions and functions of the GABAB receptors in the glo-
bus pallidus.

GABAA neurotransmission
GABAA receptors are assembled from various sub-

units including α1~6, β1~4, γ1~3, δ, ε and ρ1~3, which
are differentially expressed throughout the brain[15]. By
using subunit-specific antibodies, an extremely diverse
expression of GABAA receptor subunits in the globus
pallidus has been demonstrated[16-19]. For example, pre-
vious studies indicated that there is distinct γ subunit
labelling in the globus pallidus, subunits γ1 and γ3 stain-
ing were observed on the soma while subunits γ1 and γ2
were found on the dendrites[20,21]. Similarly, in human
external globus pallidus, α3 subunit has been shown to
be restricted to soma and proximal dendrites in high level,
but not distal dendrites[22]. Most GABAergic symmetric
synapses in globus pallidus are labeled for α1β2/3γ2[23].
Manipulation or change of the GABAA receptor system
has been shown to affect motor functions. It has been
revealed that intrapallidal injection of bicuculline into the
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external globus pallidus in monkeys induced dyskinesia
which is induced by hyperactivity of pallidal neurons[24,25].
Microinjection of GABAA receptor antagonist, bicuculline,
into the globus pallidus had marked antiparkinsonian ef-
fects[26]. In MPTP or 6-OHDA-induced parkinsonism, the
level of GABAA receptor in the globus pallidus was sig-
nificantly decreased[27-29]. By using the specific α1 sub-
unit antibody, Caruncho[30] reported that the expression
of α1 subunits was reduced significantly in globus
pallidus early after 6-OHDA lesion.
Benzodiazepine modulation site on GABAA receptor

In addition to GABA binding site, GABAA receptors
contain many other binding sites that interact with a di-
verse range of compounds such as benzodiazepines,
barbiturates, anesthetics and zinc. The benzodiazepine
binding site within the GABAA receptor is a modulation

site of significant clinical interest[31]. Upon binding to this
site, benzodiazepine potentiates the GABA currents, lead-
ing to anxiolytic, anticonvulsant and sedative effects[32,33].
Since autoradiographic studies revealed a relatively high
binding density for zolpidem in globus pallidus[34], the
electrophysiological effects of zolpidem on globus pallidus
neurons has been studied recently, in order to better un-
derstand the significance of this modulation site. Patch-
clamp recordings from the in vitro brain slices showed
that zolpidem enhances the action of GABA on postsynap-
tic GABAA receptors by prolonging the half decay time of
IPSCs[35]. The effect of zolpidem is sensitive to the benzo-
diazepine antagonist flumazenil, which had no effect on its
own. The in vitro effect of zolpidem implies that modula-
tion of the benzodiazepine site in vivo would enhance the
inhibition on pallidal neurons. In this regard, it has also

Fig. 1. Double immunolabelling for GABAB1 or GABAB2 (immunogold) and PHA-L (immunoperoxidase) in the globus pallidus. A, B:
Presynaptic (large arrow) and postsynaptic (small arrows) GABAB1 immunogold particles at symmetric synapses formed by striatal boutons
(b) anterogradely labelled with PHA-L. C, D:  Presynaptic (large arrow) and postsynaptic (small arrows) GABAB2 immunogold particles at
symmetric synapses formed by PHA-L labelled striatal boutons (b). PHA-L labelled axons (ax) were visible in B, C and D. b, bouton; d,
dendrite. Scale bars, 0.25 µm.
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been shown that microinjection of zolpidem into the glo-
bus pallidus resulted in ipsilateral rotation in the behaving
animals[35], consistent with inhibitory action on pallidal
neurons.
Subcellular localization of pre-  and postsynaptic GABAB

receptors
GABAB receptors belong to G-protein coupled recep-

tors and are divided functionally into pre- and postsynaptic
receptors. There is abundant evidence from autoradio-
graphic studies that GABAB receptors are expressed in the
globus pallidus[36,37]. More recent studies by in situ hybrid-
ization and immunocytochemistry revealed the regional and
cellular distribution of GABAB receptor subunits and their

splice variants in the globus pallidus[38-41]. Recently, by
means of pre-embedding immunogold labeling, a detailed
description of the subcellular localization of both GABAB1

and GABAB2 receptor subunits in rat globus pallidus[42] has
been achieved. At symmetric synapses, including those
formed by anterogradely-labelled striatopallidal terminals,
most GABAB1 and GABAB2 immunogold labelling was found
in the main body of pre- and postsynaptic sites (Fig.1).
However, at asymmetric synapses, mainly formed by ve-
sicular glutamate transporter 2 (VGLUT2)-positive
terminals, most GABAB1 and GABAB2 subunits were found
at the edges of both pre- and postsynaptic sites (Fig.2).
These results demonstrate the existence of presynaptic

Fig. 2. Double immunolabelling for GABAB1 or GABAB2 (immunogold) and VGLUT2 (immunoperoxidase) in the globus pallidus. A, B:
Presynaptic (large arrow) and postsynaptic (small arrow) GABAB1 immunogold particles at asymmetric synapses formed by VGLUT2-
labelled boutons (b). In B, a gold particle was located within the bouton (arrowhead). Note a presynaptic gold particle (large arrow) in the
main body of a symmetric synapse formed by an unlabelled bouton (*). C, D: Presynaptic (large arrows) and postsynaptic (small arrow)
GABAB2 immunolabelling at asymmetric synapses formed by VGLUT2-labelled boutons (b). In C, the postsynaptic density was not
prominent in the plane of this section, but subjunctional dense bodies were visible. Note an unlabelled bouton (*) formed symmetric synapse
with the same dendrite (d). b, bouton; d, dendrite. Scale bars, 0.25 µm.
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GABAB auto- and hetero- and postsynaptic GABAB

receptors. This distribution pattern for GABAB receptors
is markedly different from that observed for GABAA re-
ceptors in the globus pallidus, in which most GABAA re-
ceptors are located at symmetric synapses and rarely, if
ever, occur in the presynaptic sites[22,23].

Functions of pre- and postsynaptic GABAB receptors
Consistent with the morphological observations, patch-

clamp recordings revealed that the presynaptic GABAB

auto-, hetero- and postsynaptic GABAB receptors are func-
tional in globus pallidus. Thus, activation of presynaptic
GABAB receptors inhibits the release of GABA as well as
glutamate, while activation of postsynaptic GABAB recep-
tors hyperpolarizes the pallidal neurons[43,44]. All these ef-
fects are sensitive to the potent and specific GABAB re-
ceptor antagonist CGP55845. Furthermore, activation of
pallidal GABAB receptors by unilateral microinjection of
the agonist baclofen induced ipsilateral turning in awake
animals[44]. These results suggest that GABAB receptor in
the globus pallidus plays an important role in the regulation
of movement.

The morphological observation that some postsynap-
tic GABAB receptors were found at perisynaptic site of the
glutamatergic synapses is intriguing. This observation raises
the possibility that, in addition to activating pre- and postsyn-
aptic GABAB receptors at GABAergic synapses, GABA
released from GABA terminals may spill out to activate
GABAB receptors at the glutamatergic synapses. Whether
GABA does modulate glutamate transmission on the postsyn-
aptic site, the mechanism involved and the significance of
this process, are questions worth further pursuing.

Globus pallidus and neurological disorders
Parkinson’s disease

Parkinson’s disease is an age-related neurodegenerative
disorder, characterized by resting tremor, rigidity and
bradykinesia. Abnormal activity of the globus pallidus has
been demonstrated to be involved in the manifestation of
parkinsonian motor symptoms. In Parkinson’s disease and
its animal models, it is widely believed that depletion of
dopamine in basal ganglia leads to overactivity of the stri-
atopallidal pathway. This results in the abnormal hypoactivity
of the globus pallidal neurons, and then the decreased
GABAergic output of the globus pallidus contributes to
excessive inhibition of basal ganglia targets, leading to
akinesia and hypokinetic symptoms of Parkinson’s dis-
ease[1,45]. Furthermore, in the absence of normal dopamin-
ergic innervation, there is increased synchronized rhyth-

mic discharge and burst firing in the globus pallidus, which
may underlie resting tremor in parkinsonism[46,47].  Similar
firing pattern in the globus pallidus neurons has also been
reported in human suffering form Parkinson’s disease[48].
Recent studies on the firing properties of neurons from
organotypic culture of the globus pallidus-subthalamic
nucleus network showed that the excitatory subthalamic
nucleus and the inhibitory globus pallidus spontaneously
produce synchronized oscillating bursts, and pallidal lesion
abolishes this bursting[49]. However, from the in vivo brain,
Magill et al.[50,51] reported that the rhythmic oscillatory ac-
tivity in the subthalamic nucleus and the globus pallidus
network in Parkinson’s disease states might be driven by
the cortex. More recently, Stanford[52] demonstrated that
the bursting firing appears to arise due to the presence of
intrinsic voltage- and sodium-dependent subthreshold mem-
brane oscillations. Taken together, the intrinsic properties
of the globus pallidus neurons and/or the extrinsic cortical
inputs are important in the generation of these rhythmic
firings. In addition, the firing variability of the globus pallidus
neurons has been found to be associated with the severity
of Parkinson’s disease[53], together with a significant rela-
tionship between the neuronal activity and tremor as well
as dyskinesia[47,48]. All these findings suggest that the modi-
fication of the firing patterns of the globus pallidus neu-
rons constitutes the central origin of parkinsonian
symptoms.

Recently, a therapeutic effect of the zolpidem on some
groups of Parkinson’s patients has been reported[54,55].
Quantitative autoradiography revealed that the binding for
zolpidem is reduced significantly following lesions of the
nigrastriatal tract[56]. Taken together these observations and
the electrophysiological data described above, it is likely
that the reduction of zolpidem binding in globus pallidus
may reflect a compensatory mechanism for Parkinson’s
disease. The beneficial effect of zolpidem administration in
some groups of Parkinson’s patient may therefore derives
from the interaction of its effects on various basal ganglia
nuclei including the internal globus pallidus/entopeduncular
nucleus and substantia nigra. Thus, more information de-
rived from experiments is needed before one can fully un-
derstand the in vivo effects of zolpidem. Anyhow, this
study suggests that the benzodiazepine binding site in glo-
bus pallidus is a possible drug target for the management
of basal ganglia motor symptoms.

If GABA neurotransmission is important for the func-
tion of the basal ganglia, selective modulation of the GABA
pathways by neuromodulator is expected to alter motor
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function under normal or pathological conditions. 5-HT is
a good example. It has been shown by Chadha et al[57] that
administration of 5HT1B agonist inhibits [3H]-GABA release
from rat globus pallidus and reverses akinesia following
intrapallidal injection in reserpine-treated rat. This finding
is consistent with the concept that disinhibition or excita-
tion of the pallidal neurons would lead to decreased inhibi-
tory output from the basal ganglia to target areas, and in
line with our own observation that activation of presynap-
tic 5HT1B receptors on striato-pallidal nerve terminals leads
to decreased frequency of miniature IPSCs (unpublished
observation).

Epileptic seizures
The basal ganglia are considered to be involved in the

genesis and/or spread of epileptic activity. It has been dem-
onstrated that the neocortical epileptiform activity is modu-
lated by the basal ganglia[58-60]. Among the nuclei in basal
ganglia, the substantia nigra pars reticulata has been shown
to be involved in epilepsy control in different animal mod-
els of epilepsy through its GABAergic projections[61,62]. In
the case of globus pallidus, early studies reported that the
globus pallidus lesions prevented the generalized convul-
sions induced by cerebral cortex application of nicotine[63].
Electrical stimulation of the globus pallidus enhanced the
neocortex interictal seizure activity, proceeding to general-
ized seizure activity[60,64]. Recently, Sawamura[65] reported
that kainic acid injection into the globus pallidus induced
transient epileptogenesis, presumably due to the transient
enhancement of the globus pallidus-substantia nigra circuit
or epileptic excitation of the cortex.

A link between epileptic seizures and GABA neurotrans-
mission in the globus pallidus is suggested by the follow-
ing findings. First, the globus pallidus displays a very high
density of binding site for tiagabine[66], a selective blocker
of the GAT-1 GABA transporter[67] and a drug used clini-
cally to treat epilepsy. Second, systemic administration of
tiagabine significantly increased the extracellular GABA lev-
els in the globus pallidus[68]. Experiments had been per-
formed to gauge the importance of this GABA uptake sys-
tem on GABA neurotransmission in the globus pallidus,
and to examine its involvement in experimental seizure.
First, it was found that superfusion of tiagabine in globus
pallidus slices significantly prolonged the decay kinetics
and simultaneously decreased the frequency of GABAA

receptor-mediated IPSCs. The latter effect was reversed
by the GABAB receptor antagonist CGP55845, indicating
the involvement of presynaptic GABAB receptors[69]. These
data suggest that overspill of GABA, for instance, under

intense presynaptic activity, could activate the presynaptic
GABAB receptors on the terminals to maintain the excit-
ability of the pallidal neurons. At the same time, there is
prolonged inhibition on postsynaptic GABAA receptors.
Behavioral studies showed that intrapallidal microinjection
of tiagabine caused ipsilateral rotation, arguing that pro-
longed action of GABA on GABA receptors would domi-
nate over its inhibitory effect on GABA release[69]. Second,
intrapallidal administration of tiagabine could inhibit signifi-
cantly the occurrence of pentylenetetrazol (PTZ)-induced
tonic seizure significantly[65]. The additional finding that
balcofen microinjection into the globus pallidus completely
suppresses PTZ-induced tonic seizure suggests that GABAB

receptors play a significant role in modulating the thresh-
old of seizure activity[70].

Concluding remarks
The importance of the globus pallidus in the basal gan-

glia circuit is emerging in recent years. By combining
morphological, electrophysiological and behavioral studies,
our laboratory has contributed some novel information on
GABA neurotransmission in globus pallidus and its involve-
ment in neurological disorders. However, the functioning
of the globus pallidus also depends on other neurotrans-
mitter/neuromodulator systems including, notably,
glutamate, dopamine, enkephalins, neurotensin and 5HT.
The functions and interplay between this rich repertoire of
neuroactive compounds must be elucidated in detail before
one could better understand the role of the globus pallidus.
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